首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The serotonin 5-HT1A and 5-HT1B receptors are two structurally related but pharmacologically distinguishable 5-HT receptor types. In brain, the 5-HT1A receptor is localized on the soma and dendrites of neurons, whereas the 5-HT1B receptor is targeted to the axon terminals. We previously showed that these two receptors are targeted in different membrane compartments when stably expressed in the epithelial LLC-PK1 cell line. Further investigations on the mechanisms responsible for their differential targeting were done by constructing chimeras of 5-HT1A and 5-HT1B receptors still able to bind specifically [3H]lysergic acid diethylamide and selective agonists and antagonists. Their cellular localization examined by confocal microscopy suggests that the third intracellular domain of the 5-HT1B receptor was responsible for its Golgi-like localization in transfected LLC-PK1 cells. In contrast, the third intracellular domain of the 5-HT1A receptor apparently allowed the sorting of the chimeras to the plasma membrane. Further inclusion of the C-terminal domain of the 5-HT1A receptor in their sequence led to a basolateral localization, whereas that of the 5-HT1B receptor allowed an apical targeting, suggesting the existence of a targeting signal in this portion of the receptor(s).  相似文献   

2.
The present study was aimed at comparing the effects of serotonin (5-HT) synthesis blockade using chronic administration of p-chlorophenylalanine (PCPA) and 5,7-dihydroxytryptamine injections of variable volume (3 vs. 6 microl) on the density of NPY immunoreactive (Ir) neurons and binding of [3H]8-OH-DPAT, S-CM-G[125I]TNH2 and [125I]DOI to 5-HT1A, 5-HT1B/1D, and 5-HT2A/2C receptors in rat cortical regions. Three weeks after large but partial (89% depletion in 5-HT tissue concentration) lesions of 5-HT neurons no changes in neither NPY immunoreactivity nor 5-HT receptor binding were detected. The complete 5,7-DHT lesions produced increases in the number of NPY-Ir neurons in the upper regions of the cingular (134%), frontal (140%) and parietal cortex (48%) and corresponding decreases in 5-HT2A/2C binding (16-26%). No changes in 5-HT1A and 5-HT1B/1D binding were observed after lesions of this kind. After PCPA treatment, decreases in NPY-Ir neurons density (22-40%) and increases in 5-HT1A and 5-HT1B/1D receptor binding sites (20-50%) were distributed in both upper and deeper cortical regions. The lack of effect of the partial lesion suggests that spared 5-HT neurons may exert compensatory mechanisms up to a large extent. The changes in NPY immunoreactivity and 5-HT2A/2C binding detected in the upper regions of the cortex after complete 5-HT lesions probably result from local cellular rearrangements, whereas blocking 5-HT synthesis has more widespread influence on NPY neurons and on 5-HT1A and 5-HT1B/1D receptor subtypes. Moreover, decreases in DOPAC concentrations detected only after complete lesions suggest that the involvement of catecholaminergic transmission may also differentiate 5,7-DHT and PCPA treatments. Altogether, these data suggest that different receptor subtypes might be involved in 5-HT-NPY relationships.  相似文献   

3.
The present studies were designed to determine the effects of 5-HT1A receptor agonists and 5-HT2A/2C and 5-HT3 antagonists on adrenocortical responses to a variety of stress paradigms in conscious male rats. The following stressors were examined: acoustic stress (105 dB for 2 min); foot shock (0.2 mA, five shocks over 5 min); conditioned fear (animals placed in the foot shock chamber for 5 min, 24 h after foot shock); restraint (Plexiglas restrainer for 5 min); injection of recombinant human interleukin-1 alpha (IL-1, 20 micrograms/kg, IP); injection of cocaine hydrochloride (20 mg/kg, IP). Drug treatments consisted of intracerebroventricular (ICV) or intraperitoneal (IP) injections of the 5-HT1A agonists, 8-OH-DPAT and ipsapirone (0.1 pmol, ICV), the 5-HT2A/2C antagonist, ketanserin (2 mumol/kg, IP), and the 5-HT3 antagonist, MDL-72222 (20 nmol, ICV). The plasma corticosterone (CS) responses to foot shock and restraint stress were not affected by any of the serotonergic drugs tested. The 5-HT1A agonist, 8-OH-DPAT, was able to attenuate the adrenocortical responses to acoustic stimulation, conditioned fear, IL-1 alpha, and cocaine administration, with ipsapirone also being effective in reducing the responses to acoustic stimulation and cocaine injection. The 5-HT2 antagonist, ketanserin was able to reduce the adrenocortical response in the conditioned fear paradigm and the response to IL-1 alpha injection. The 5-HT3 antagonist, MDL-72222 was only effective in reducing the response to acoustic stimulation. Thus, adrenocortical responses to each of the applied stressors were differentially affected by the 5-HT receptor ligands tested. The results of this study indicate that 5-HT1A agonists may be efficient stress response-reducing agents. However, their efficacy depends on the lack of a somatosensory component to the applied stressor and their agonist properties suggest that their action may not involve direct effects on serotonergic pathways mediating the observed responses. In contrast, the specificity of the 5-HT2 and 5-HT3 antagonists in blocking adrenocortical responses to certain stressors suggests that these drugs exert their effects by blocking serotonergic neurotransmission in pathways mediating the adrenocortical responses to specific stimuli.  相似文献   

4.
We have previously demonstrated that susceptibility of the Lewis rat to inflammatory disease, compared to the relatively resistant Fischer F344 rat, is related to a hyporesponsive hypothalamopituitary adrenal axis to inflammatory and other stress mediators. Since 5-HT and the 5HT1A receptor are important stimulators of this axis, we have investigated the levels of 5-HT1A receptor binding sites and encoding mRNA, 5-HT and 5-hydroxyindole acetic acid in various brain regions of Lewis, Harlan Sprague Dawley and Fischer F344 rats. Lewis rats expressed significantly less hippocampal and frontal cortical 5-HT1A receptor binding sites and mRNA than Harlan Sprague-Dawley and Fischer F344 rats. Adrenalectomy increased the number of 5HT1A receptor binding sites and mRNA expression in the hippocampus of all three strains. The levels of hippocampal 5-HT in Fischer F344 rats were significantly greater than levels detected in the same regions for the other two strains. Hypothalamic 5-HT and 5-hydroxyindole acetic acid levels in Harlan Sprague-Dawley rats were higher than the same area from the other two strains. Adrenalectomy increased the levels of 5-hydroxyindole acetic acid in the hypothalamus of all three strains. We conclude that hippocampal 5-HT1A receptor densities and 5-HT levels in the rat parallel the the activity and responsiveness of the hypthalamopituitary-adrenal axis. We have published these data in an earlier report.  相似文献   

5.
Repeated administration of diazepam for 14 days (5 mg/kg daily) resulted in a significant increase of 5-HT1A receptor density in the midbrain of the rat. Bmax values were increased from 239.6 to 684.9 fmol/mg. The affinity constants (KD) were also increased, from 0.97 to 3.01 nM/l.  相似文献   

6.
The similar pharmacology of the 5-HT1B and 5-HT1D receptors, and the lack of selective compounds sufficiently distinguishing between the two receptor subtypes, have hampered functional studies on these receptors. In order to provide clues for differential functional roles of the two subtypes, we performed a parallel localization study throughout the guinea-pig brain and the trigeminal ganglia by means of quantitative in situ hybridization histochemistry (using [35S]-labelled riboprobes probes for receptor messenger RNA) and receptor autoradiography (using a new radioligand [3H]alniditan). The anatomical patterns of 5-HT1B and 5-HT1D receptor messenger RNA were quite different. While 5-HT1B receptor messenger RNA was abundant throughout the brain (with highest levels in the striatum, nucleus accumbens, olfactory tubercle, cortex, hypothalamus, hippocampal formation, amygdala, thalamus, dorsal raphe and cerebellum), 5-HT1D receptor messenger RNA exhibited a more restricted pattern; it was found mainly in the olfactory tubercle, entorhinal cortex, dorsal raphe, cerebellum, mesencephalic trigeminal nucleus and in the trigeminal ganglion. The density of 5-HT(1B/1D) binding sites (combined) obtained with [3H]alniditan autoradiography was high in the substantia nigra, superior colliculus and globus pallidus, whereas lower levels were detected in the caudate-putamen, hypothalamus, hippocampal formation, amygdala, thalamus and central gray. This distribution pattern was indistinguishable from specific 5-HT1B receptor labelling in the presence of ketanserin under conditions to occlude 5-HT1D receptor labelling; hence the latter were below detection level. Relationships between the regional distributions of the receptor messenger RNAs and binding sites and particular neuroanatomical pathways are discussed with respect to possible functional roles of the 5-HT1B and 5-HT1D receptors.  相似文献   

7.
Systemic administration of the 5-HT1A receptor agonist 8-OH-2-(di-n-propylamino)-tetralin (8-OH-DPAT; 0.3 mg/kg, s.c.) was used to explore the effects of activation of 5-HT1A receptors on expression of mRNA coding for 5-HT1A receptor, tryptophan hydroxylase (TPH) and galanin in the ascending raphe nuclei. 8-OH-DPAT increased the hybridization signal of the 5-HT1A receptor by 105% in the dorsal raphe nucleus (B7) 30 min after the injection. No effects were seen at the later time points (2-8 h). In the median raphe nucleus (B8) and the B9 cell group in the medial lemniscus, 8-OH-DPAT induced a marked decrease in labeling 30 min after injection. At 8 h following 8-OH-DPAT injection, the effect had shifted to an increase in 5-HT1A receptor labeling by 68% in the B8 area. Importantly 8-OH-DPAT had no significant effects on the expression of mRNA coding for TPH and galanin. The results suggest an important and differential mechanism for the regulation of 5-HT1A receptor mRNA levels in the dorsal and median raphe nuclei. This regulation may be of importance for the differential control of the activity of the ascending 5-HT neurons, and hence for mood regulation. The results also indicate a dissociation between the effects mediated by 5-HT1A receptor functions and those regulating the coexisting peptide galanin in the dorsal raphe.  相似文献   

8.
We examined the effect of fatty acids (FA) and some other bioactive lipids on A1-adenosine receptor (A1-AR) binding in rat brain membranes using the selective agonist (3H)-N6-cyclohexyladenosine [(3H)CHA]. A significant reduction in ligand binding was observed at micromolar concentrations of unsaturated fatty acid with the following potency: oleic < arachidonic < decosaenoic < linoleic < linolenic acid. The other tested compounds: lysophospholipids, platelet-activating factor (PAF) and GM1-ganglioside were without effect on A1-AR expression. The inhibition with unsaturated FA was non-competitive and partially reversed by albumin. The A1-AR agonist binding inhibition evoked by unsaturated FA in many respects is similar to that observed previously following ischaemia and may be contributory to the increased excitability of post-ischaemic brain.  相似文献   

9.
Spiperone (1) is a widely used pharmacological tool that acts as a potent dopamine D2, serotonin 5-HT1A, and serotonin 5-HT2A antagonist. Although spiperone also binds at 5-HT2C receptors, it is one of the very few agents that display some (ca. 1000-fold) binding selectivity for 5-HT2A versus 5-HT2C receptors and, hence, might serve as a useful template for the development of novel 5-HT2A antagonists if the impact of its various substituent groups on binding was known. In the present investigation we focused on the 1, 3,8-triazaspiro[4.5]decanone portion of spiperone and found that replacement of the N1-phenyl group with a methyl group only slightly decreased affinity for cloned rat 5-HT2A receptors. However, N1-methyl derivatives displayed significantly reduced affinity for 5-HT1A, 5-HT2C, and dopamine D2 receptors. Several representative examples were shown to behave as 5-HT2 antagonists. As such, N1-alkyl analogues of spiperone may afford entry into a novel series of 5-HT2A-selective antagonists.  相似文献   

10.
One of the critical mechanisms by which alcohol heightens aggression involves forebrain serotonin (5-HT) systems, possibly via actions on 5-HT1A receptors. The present experiments tested the hypothesis that activating 5-HT1A receptors by selective agonists will block the aggression-heightening effects of ethanol. Initially, the selective antagonist WAY 100635 was used to assess whether or not the changes in aggressive behavior after treatment with 8-OH-DPAT and flesinoxan result from action at the 5-HT1A receptors. Resident male CFW mice engaged in aggressive behavior (i.e. attack bites, sideways threats, tail rattle) during 5-min confrontations with a group-housed intruder male. Quantitative analysis of the behavioral repertoire revealed systematic reductions in all salient elements of aggressive behavior after treatment with 8-OH-DPAT (0.1-0.3 mg/kg, i.p.) or flesinoxan (0.1-1.0 mg/kg, i.p.). The 5-HT1A agonists also reduced motor activities such as walking, rearing and grooming, although to a lesser degree. Pretreatment with the antagonist WAY 100635 (0.1 mg/kg, i.p.) shifted the agonist dose-effect curves for behavioral effects to the right. In a further experiment, oral ethanol (1.0 g/kg, p.o.) increased the frequency of attacks in excess of 2 SD from their mean vehicle level of attacks in 19 out of 76 resident mice. Low doses of 8-OH-DPAT (0.03-0.3 mg/kg) and flesinoxan (0.1, 0.3, 0.6 mg/kg), given before the ethanol treatment, attenuated the alcohol-heightened aggression in a dose-dependent fashion. By contrast, these low 5-HT1A agonist doses affected motor activity in ethanol-treated resident mice to a lesser degree, suggesting behavioral specificity of these anti-aggressive effects. The current results support the hypothesized significant role of 5-HT1A receptors in the aggression-heightening effects of alcohol. If these effects are in fact due to action at somatodendritic 5-HT1A autoreceptors, then the anti-aggressive effects would be associated with decreased 5-HT neurotransmission.  相似文献   

11.
The present study has employed in vitro electrophysiology to characterise the ability of bradykinin to depolarise the rat isolated nodose ganglion preparation, containing the perikarya of vagal afferent neurons. Both bradykinin and kallidin elicited a concentration-dependent (1-100 nM) depolarisation when applied to the superfusate bathing the nodose ganglia, whereas the bradykinin B1 receptor agonist, des-Arg9-bradykinin, was only effective in the micromolar range. Furthermore, the electrophysiological response to bradykinin was antagonised by the bradykinin B2 receptor antagonist, D-arginyl-L-arginyl-L-prolyl-trans-4-hydroxy-L-prolylglycyl-3-(2-t hienyl)-L-alanyl-L-seryl-D-1,2,3,4-tetrahydro-3-isoquinolinecarbonyl+ ++-L-(2alpha,3beta,7abeta)-octahydro-1H-indole-2-carbonyl-L- arginine (Hoe 140), in a concentration-related manner. To determine the anatomical location of functional bradykinin B2 receptors, in vitro autoradiography with [125I]para-iodophenyl Hoe 140 was performed on sections of rat and human inferior vagal (nodose) ganglia and confirmed the presence of binding over vagal perikarya. Collectively, these data provide evidence for functionally relevant bradykinin B2 receptors on vagal afferent neurons, which are apparently also present on human vagal perikarya.  相似文献   

12.
We examined the effects of repeated administration of (S)-alpha-fluoromethylhistidine (FMH), a specific inhibitor of histidine decarboxylase (HDC), on radial maze performance and brain contents of histamine and amino acids in rats. By daily subcutaneous (s.c.) administration of FMH (100 mg/kg), rats showed significant enhancement of a radial maze performance without changes in locomotion. Six days after FMH treatment, the histamine levels both in the cerebral cortex and diencephalon decreased significantly. However, the glutamate and glycine levels significantly increased in the cerebral cortex and hippocampus. These results suggest that FMH enhances the acquisition phase of radial maze study with the increases in glutamate and glycine levels in the cerebral cortex and hippocampus of rats.  相似文献   

13.
This study was undertaken to investigate the pharmacology of cloned guinea pig and rat 5-hydroxytryptamine (serotonin; 5-HT)1D receptor sites. Guinea pig, rat, and mouse 5-HT1D receptor genes were cloned, and their amino acid sequences were compared with those of the human, dog, and rabbit. The overall amino acid sequence identity between these 5-HT1D receptors is high and varies between 86 and 99%. The sequence homology is slightly more divergent (13-27%) in the N-terminal extracellular region of these 5-HT1D receptors. Guinea pig and rat 5-HT1D receptors, stably and separately expressed in rat C6 glial cells, are negatively coupled to cyclic AMP formation upon stimulation with agonists, as previously found for cloned human 5-HT1D receptor sites. The cyclic AMP data show some common pharmacological features for the 5-HT1D receptors of guinea pig, rat, and human: an almost similar rank order of potency for the investigated 5-HT1D receptor agonists, stereoselectivity for the binding affinity and agonist potency of R(+)-8-hydroxy-2-(di-n-propylamino)tetralin, and equal 5-HT1D receptor-mediated antagonist potency for methiothepin and the 5-HT2 receptor antagonists ritanserin and ketanserin. In conclusion, the pharmacology of the cloned 5-HT1D receptor subtype seems, unlike the 5-HT1B receptor subtype, conserved among various mammal species such as the human, guinea pig, and rat.  相似文献   

14.
Time-resolved small-angle X-ray scattering (TR-SAXS) was used to monitor the structural changes that occur upon the binding of the natural substrates to a mutant version of the allosteric enzyme aspartate transcarbamoylase from Escherichia coli, in which the creation of a critical link stabilizing the R state of the enzyme is hindered. Previously, SAXS experiments at equilibrium showed that the structures of the unligated mutant enzyme and the mutant enzyme saturated with a bisubstrate analog are indistinguishable from the T and R state structures, respectively, of the wild-type enzyme (Tauc et al., Protein Sci. 3:1998-2004, 1994). However, as opposed to the wild-type enzyme, the combination of one substrate, carbamoyl phosphate, and succinate, an analog of aspartate, did not convert the mutant enzyme into the R state. By using TR-SAXS we have been able to study the transient steady-state during catalysis using the natural substrates rather than the nonreactive substrate analogs. The steady-state in the presence of saturating amount of substrates is a mixture of 60% T and 40% R structures, which is further converted entirely to R in the additional presence of ATP. These results provide a structural explanation for the reduced cooperativity observed with the mutant enzyme as well as for the stimulation by ATP at saturating concentrations of substrates. They also illustrate the crucial role played by domain motions and quaternary-structure changes for both the homotropic and heterotropic aspects of allostery.  相似文献   

15.
5-HT1A autoreceptor antagonists enhance the effects of antidepressants by preventing a negative feedback of serotonin (5-HT) at somatodendritic level. The maximal elevations of extracellular concentration of 5-HT (5-HT(ext)) induced by the 5-HT uptake inhibitor paroxetine in forebrain were potentiated by the 5-HT1A antagonist WAY-100635 (1 mg/kg s.c.) in a regionally dependent manner (striatum > frontal cortex > dorsal hippocampus). Paroxetine (3 mg/kg s.c.) decreased forebrain 5-HT(ext) during local blockade of uptake. This reduction was greater in striatum and frontal cortex than in dorsal hippocampus and was counteracted by the local and systemic administration of WAY-100635. The perfusion of 50 micromol/L citalopram in the dorsal or median raphe nucleus reduced 5-HT(ext) in frontal cortex or dorsal hippocampus to 40 and 65% of baseline, respectively. The reduction of cortical 5-HT(ext) induced by perfusion of citalopram in midbrain raphe was fully reversed by WAY-100635 (1 mg/kg s.c.). Together, these data suggest that dorsal raphe neurons projecting to striatum and frontal cortex are more sensitive to self-inhibition mediated by 5-HT1A autoreceptors than median raphe neurons projecting to the hippocampus. Therefore, potentiation by 5-HT1A antagonists occurs preferentially in forebrain areas innervated by serotonergic neurons of the dorsal raphe nucleus.  相似文献   

16.
We recently reported the cloning of a new member of the serotonin 5-HT2 family, the 5-HT2B receptor. We now report the production and characterisation of a specific antiserum directed against the C-terminal portion of the mouse 5-HT2B receptor. After affinity purification, this polyclonal antibody recognises specifically the mouse 5-HT2B receptor. Immunohistochemical analysis of cryosections from various adult mouse tissues reveals a major 5-HT2B receptor expression in stomach, intestine and pulmonary smooth muscles as well as in myocardium. Furthermore, the antiserum recognises specific areas of the mouse brain, including cerebellar Purkinje cells and their projection areas.  相似文献   

17.
Although serotonin (5-hydroxytryptamine; 5-HT) is used for provocation of coronary spasm, 5-HT receptor subtypes in spastic coronary arteries remain undetermined. We demonstrated the supersensitivity of isolated coronary artery to ergonovine, 5-HT, and sumatriptan, a 5-HT1D receptor agonist, in a patient with variant angina. Furthermore, we detected gene expression of 5-HT1Dbeta and 5-HT2A receptors in spastic coronary artery using RNase protection assay. These findings suggest that the leftward shift of the dose-response curve for 5-HT, which plays an important role in the pathogenesis of coronary spasm, is mediated by activation of 5-HT1Dbeta receptor.  相似文献   

18.
1. Selective 5-hydroxytryptamine (5-HT; serotonin) reuptake inhibitors (SSRIs) cause a greater increase in extracellular 5-HT in the forebrain when the somatodendritic 5-HT1A autoreceptor is blocked. Here, we investigated whether blockade of the terminal 5-HT1B autoreceptor influences a selective 5-HT reuptake inhibitor in the same way, and whether there is an additional effect of blocking both the 5-HT1A and 5-HT1B autoreceptors. 2. Extracellular 5-HT was measured in frontal cortex of the anaesthetized rat by use of brain microdialysis. In vivo extracellular recordings of 5-HT neuronal activity in the dorsal raphe nucleus (DRN) were also carried out. 3. The selective 5-HT reuptake inhibitor, paroxetine (0.8 mg kg-1, i.v.), increased extracellular 5-HT about 2 fold in rats pretreated with the 5-HT1A receptor antagonist, WAY100635. When administered alone neither paroxetine (0.8 mg kg-1, i.v.) nor WAY100635 (0.1 mg kg-1, i.v.) altered extracellular 5-HT levels. 4. Paroxetine (0.8 mg kg-1, i.v.) did not increase 5-HT in rats pretreated with the 5-HT1B/D receptor antagonist, GR127935 (1 mg kg-1, i.v.). GR127935 (1 and 5 mg kg-1, i.v.) had no effect on extracellular 5-HT when administered alone. 5. Interestingly, paroxetine (0.8 mg kg-1, i.v.) caused the greatest increase in 5-HT (up to 5 fold) when GR127935 (1 or 5 mg kg-1, i.v.) was administered in combination with WAY100635 (0.1 mg kg-1, i.v.). Administration of GR127935 (5 mg kg-1, i.v.) plus WAY100635 (0.1 mg kg-1, i.v.) without paroxetine, had no effect on extracellular 5-HT in the frontal cortex. 6. Despite the lack of effect of GR127935 on 5-HT under basal conditions, when 5-HT output was elevated about 3 fold (by adding 1 microM paroxetine to the perfusion medium), the drug caused a dose-related (1 and 5 mg kg-1, i.v.) increase in 5-HT. 7. By itself, GR127935 slightly but significantly decreased 5-HT cell firing in the DRN at higher doses (2.0-5.0 mg kg-1, i.v.), but did not prevent the inhibition of 5-HT cell firing induced by paroxetine. 8. In summary, our results suggest that selective 5-HT reuptake inhibitors may cause a large increase in 5-HT in the frontal cortex when 5-HT autoreceptors on both the somatodendrites (5-HT1A) and nerve terminals (5-HT1B) are blocked. This increase is greater than when either set of autoreceptors are blocked separately. The failure of a 5-HT1B receptor antagonist alone to enhance the effect of the selective 5-HT reuptake inhibitor in our experiments may be related to a lack of tone on the terminal 5-HT1B autoreceptor due to a continued inhibition of 5-HT cell firing. These results are discussed in relation to the use of 5-HT autoreceptor antagonists to augment the antidepressant effect of selective 5-HT reuptake inhibitors.  相似文献   

19.
The role of serotonin in CNS function and in many neuropsychiatric diseases (e.g., schizophrenia, affective disorders, degenerative dementias) support the development of a reliable measure of serotonin receptor binding in vivo in human subjects. To this end, the regional distribution and intrasubject test-retest variability of the binding of [18F]altanserin were measured as important steps in the further development of [18F]altanserin as a radiotracer for positron emission tomography (PET) studies of the serotonin 5-HT2A receptor. Two high specific activity [18F]altanserin PET studies were performed in normal control subjects (n = 8) on two separate days (2-16 days apart). Regional specific binding was assessed by distribution volume (DV), estimates that were derived using a conventional four compartment (4C) model, and the Logan graphical analysis method. For both analysis methods, levels of [18F]altanserin binding were highest in cortical areas, lower in the striatum and thalamus, and lowest in the cerebellum. Similar average differences of 13% or less were observed for the 4C model DV determined in regions with high receptor concentrations with greater variability in regions with low concentrations (16-20%). For all regions, the absolute value of the test-retest differences in the Logan DV values averaged 12% or less. The test-retest differences in the DV ratios (regional DV values normalized to the cerebellar DV) determined by both data analysis methods averaged less than 10%. The regional [18F]altanserin DV values using both of these methods were significantly correlated with literature-based values of the regional concentrations of 5-HT2A receptors determined by postmortem autoradiographic studies (r2 = 0.95, P < 0.001 for the 4C model and r2 = 0.96, P < 0.001 for the Logan method). Brain uptake studies in rats demonstrated that two different radiolabeled metabolites of [18F]altanserin (present at levels of 3-25% of the total radioactivity in human plasma 10-120 min postinjection) were able to penetrate the blood-brain barrier. However, neither of these radiolabeled metabolites bound specifically to the 5-HT2A receptor and did not interfere with the interpretation of regional [18F]altanserin-specific binding parameters obtained using either a conventional 4C model or the Logan graphical analysis method. In summary, these results demonstrate that the test-retest variability of [18F]altanserin-specific binding is comparable to that of other PET radiotracers and that the regional specific binding of [18F]altanserin in human brain was correlated with the known regional distribution of 5-HT2A receptors. These findings support the usefulness of [18F]altanserin as a radioligand for PET studies of 5-HT2A receptors.  相似文献   

20.
We have used a combination of sequence comparisons, computer-based modeling and site-directed mutagenesis to investigate the molecular interactions involved in ligand binding and signal transduction of the human 5-HT1B receptor. Two amino acid residues, S212 in transmembrane region (TM) V and F331 in TM VI, were replaced by alanines. These amino acids are conserved in many G protein-coupled receptors and therefore likely to be important for receptor function. The mutant receptors were expressed in Chinese hamster ovary cells. The 5-HT-like agonist 5-carboxamido-tryptamine (5-CT) bound with 15-fold lower affinity to the S212A mutant as compared to wild-type receptor and the antagonist methiothepin bound with 17-fold lower affinity to the F331A mutant. No reduction in the affinity of 5-HT was seen for the S212A mutant, although an equivalent mutation in the 5-HT1A receptor resulted in a 100-fold reduction of 5-HT binding. The inhibition of forskolin-stimulated cyclic AMP production by 5-HT was significantly reduced in cells expressing the F331A mutant, even though the endogenous ligand 5-HT bound with somewhat increased affinity. Methiothepin acted as an inverse agonist and increased the forskolin-stimulated cyclic AMP production at both the wild-type receptor and the mutants, and the effect was stronger on the F331A mutant. These results suggest that F331 is involved in the conformational changes necessary for signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号