首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new methodology for recovering equilibrated stress fields is presented, which is based on traction‐free subdomains' computations. It allows a rather simple implementation in a standard finite element code compared with the standard technique for recovering equilibrated tractions. These equilibrated stresses are used to compute a constitutive relation error estimator for a finite element model in 2D linear elasticity. A lower bound and an upper bound for the discretization error are derived from the error in the constitutive relation. These bounds in the discretization error are used to build lower and upper bounds for local quantities of interest. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Classical residual type error estimators approximate the error flux around the elements and yield upper bounds of the exact (or reference) error. Lower bounds of the error are also needed in goal oriented adaptivity and for bounds on functional outputs. This work introduces a simple and cheap strategy to recover a lower bound estimate from standard upper bound estimates. This lower bound may also be used to assess the effectivity of the former estimate and to improve it. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
This paper proposes a generalized pointwise bias error bounds estimation method for polynomial‐based response surface approximations when bias errors are substantial. A relaxation parameter is introduced to account for inconsistencies between the data and the assumed true model. The method is demonstrated with a polynomial example where the model is a quadratic polynomial while the true function is assumed to be cubic polynomial. The effect of relaxation parameter is studied. It is demonstrated that when bias errors dominate, the bias error bounds characterize the actual error field better than the standard error. The bias error bound estimates also help to identify regions in the design space where the accuracy of the response surface approximations is inadequate. It is demonstrated that this information can be utilized for adaptive sampling in order to improve accuracy in such regions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents a new stress recovery technique for the generalized/extended finite element method (G/XFEM) and for the stable generalized FEM (SGFEM). The recovery procedure is based on a locally weighted L2 projection of raw stresses over element patches; the set of elements sharing a node. Such projection leads to a block-diagonal system of equations for the recovered stresses. The recovery procedure can be used with GFEM and SGFEM approximations based on any choice of elements and enrichment functions. Here, the focus is on low-order 2D approximations for linear elastic fracture problems. A procedure for computing recovered stresses at re-entrant corners of any internal angle is also presented. The proposed stress recovery technique is used to define a Zienkiewicz-Zhu (ZZ) a posteriori error estimator for the G/XFEM and the SGFEM. The accuracy, computational cost, and convergence rate of recovered stresses together with the quality of the ZZ estimator, including its effectivity index, are demonstrated in problems with smooth and singular solutions.  相似文献   

5.
The paper presents a novel strategy providing fully computable upper bounds for the energy norm of the error in the context of three-dimensional linear finite element approximations of the reaction-diffusion equation. The upper bounds are guaranteed regardless the size of the finite element mesh and the given data, and all the constants involved are fully computable. The upper bound property holds if the shape of the domain is polyhedral and the Dirichlet boundary conditions are piecewise-linear. The new approach is an extension of the flux-free methodology introduced by Parés and Díez in the paper “A new equilibrated residual method improving accuracy and efficiency of flux-free error estimates”, which introduces a guaranteed, low-cost, and efficient flux-free method substantially reducing the computational cost of obtaining guaranteed bounds using flux-free methods while retaining the good quality of the bounds. Besides extending the 2D methodology, specific new modifications are introduced to further reduce the computational cost in the three-dimensional setting. The presented methodology also provides a new strategy to obtain equilibrated boundary tractions, which improves the quality of standard techniques while having a similar computational cost.  相似文献   

6.
The Penalized Discrete Least‐Squares (PDLS) stress recovery (smoothing) technique developed for two‐dimensional linear elliptic problems [1–3] is adapted here to three‐dimensional shell structures. The surfaces are restricted to those which have a 2‐D parametric representation, or which can be built‐up of such surfaces. The proposed strategy involves mapping the finite element results to the 2‐D parametric space whichdescribes the geometry, and smoothing is carried out in the parametric space using the PDLS‐based Smoothing Element Analysis (SEA). Numerical results for two well‐known shell problems are presented to illustrate the performance of SEA/PDLS for these problems. The recovered stresses are used in the Zienkiewicz–Zhu a posteriori error estimator. The estimated errors are used to demonstrate the performance of SEA‐recovered stresses in automated adaptive mesh refinement of shell structures. The numerical results are encouraging. Further testing involving more complex, practical structures is necessary. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
We obtain fully computable a posteriori error estimators for the energy norm of the error in second‐order conforming and nonconforming finite element approximations in planar elasticity. These estimators are completely free of unknown constants and give a guaranteed numerical upper bound on the norm of the error. The estimators are shown to also provide local lower bounds, up to a constant and higher‐order data oscillation terms. Numerical examples are presented illustrating the theory and confirming the effectiveness of the estimator. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper we present two types of local error estimators for the primal finite‐element‐method (FEM) by duality arguments. They are first derived from the (explicit) residual error estimation method (REM) and then—as a new contribution—from the (implicit) posterior equilibrium method (PEM) using improved boundary tractions, gained by local post‐processing with local Neumann problems, with applications in elastic problems. For the displacements a local error estimator with an upper bound is derived and also a local estimator for stresses. Furthermore—for better numerical efficiency—the residua are projected energy‐invariant onto reference elements, where the local Neumann problems have to be solved. Comparative examples between REM‐ and PEM‐type local estimators show superior effectivity indices for the latter one. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
This is the first of two papers concerning superconvergent recovery techniques and a posteriori error estimation. In this paper, a general recovery technique is developed for determining the derivatives (stresses) of the finite element solutions at nodes. The implementation of the recovery technique is simple and cost effective. The technique has been tested for a group of widely used linear, quadratic and cubic elements for both one and two dimensional problems. Numerical experiments demonstrate that the recovered nodal values of the derivatives with linear and cubic elements are superconvergent. One order higher accuracy is achieved by the procedure with linear and cubic elements but two order higher accuracy is achieved for the derivatives with quadratic elements. In particular, an O(h4) convergence of the nodal values of the derivatives for a quadratic triangular element is reported for the first time. The performance of the proposed technique is compared with the widely used smoothing procedure of global L2 projection and other methods. It is found that the derivatives recovered at interelement nodes, by using L2 projection, are also superconvergent for linear elements but not for quadratic elements. Numerical experiments on the convergence of the recovered solutions in the energy norm are also presented. Higher rates of convergence are again observed. The results presented in this part of the paper indicate clearly that a new, powerful and economical process is now available which should supersede the currently used post-processing procedures applied in most codes.  相似文献   

10.
The scaled boundary finite‐element method is a novel semi‐analytical technique, combining the advantages of the finite element and the boundary element methods with unique properties of its own. This paper develops a stress recovery procedure based on a modal interpretation of the scaled boundary finite‐element method solution process, using the superconvergent patch recovery technique. The recovered stresses are superconvergent, and are used to calculate a recovery‐type error estimator. A key feature of the procedure is the compatibility of the error estimator with the standard recovery‐type finite element estimator, allowing the scaled boundary finite‐element method to be compared directly with the finite element method for the first time. A plane strain problem for which an exact solution is available is presented, both to establish the accuracy of the proposed procedures, and to demonstrate the effectiveness of the scaled boundary finite‐element method. The scaled boundary finite‐element estimator is shown to predict the true error more closely than the equivalent finite element error estimator. Unlike their finite element counterparts, the stress recovery and error estimation techniques work well with unbounded domains and stress singularities. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
The miscible displacement of one incompressible fluid by another in a porous medium is governed by a system of two equations. One is an elliptic equation of the pressure and the other is a parabolic equation of the concentration of one of the fluids. Since the pressure appears in the concentration only through its velocity field, we choose a mixed finite element method to approximate the pressure equation and for the concentration we use the standard Galerkin method. We shall obtain an explicit a posteriori error estimator in L2(L2) for the semi‐discrete scheme applied to the non‐linear coupled system. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
The method developed for determining the upper and lower bounds of the critical load parameters in elastic ribbed shells is described. The critical parameters for cylindrical shells with three types of stiffening, namely, by cross ribs, by stringers and by rings only, are justified experimentally. It is shown that the lower bounds of the critical loads agree with the minimum experimental parameters much better than the upper bounds of the critical loads determined from the linear momentless theory. __________ Translated from Problemy Prochnosti, No. 2, pp. 59–80, March–April, 2006.  相似文献   

13.
In this work, we analyze a method that leads to strict and high‐quality local error bounds in the context of fracture mechanics. We investigate in particular the capability of this method to evaluate the discretization error for quantities of interest computed using the extended finite element method (XFEM). The goal‐oriented error estimation method we are focusing on uses the concept of constitutive relation error along with classical extraction techniques. The main innovation in this paper resides in the methodology employed to construct admissible fields in the XFEM framework, which involves enrichments with singular and level set basis functions. We show that this construction can be performed through a generalization of the classical procedure used for the standard finite element method. Thus, the resulting goal‐oriented error estimation method leads to relevant and very accurate information on quantities of interest that are specific to fracture mechanics, such as mixed‐mode stress intensity factors. The technical aspects and the effectiveness of the method are illustrated through two‐dimensional numerical examples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The superconvergent patch recovery (SPR) technique is widely used in the evaluation of a recovered stress field σ * from the finite element solution σ fe. Several modifications of the original SPR technique have been proposed. A new improvement of the SPR technique, called SPR‐C technique (Constrained SPR), is presented in this paper. This new technique proposes the use of the appropriate constraint equations in order to obtain stress interpolation polynomials in the patch σ that locally satisfy the equations that should be satisfied by the exact solution. As a result the evaluated expressions for σ will satisfy the internal equilibrium and compatibility equations in the whole patch and the boundary equilibrium equation at least in vertex boundary nodes and, under certain circumstances, along the whole boundary of the patch coinciding with the boundary of the domain. The results show that the use of this technique considerably improves the accuracy of the recovered stress field σ * and therefore the local effectivity of the ZZ error estimator. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Structural reliability methods aim at computing the probability of failure of systems with respect to prescribed limit state functions. A common practice to evaluate these limit state functions is using Monte Carlo simulations. The main drawback of this approach is the computational cost, because it requires computing a large number of deterministic finite element solutions. Surrogate models, which are built from a limited number of runs of the original model, have been developed, as substitute of the original model, to reduce the computational cost. However, these surrogate models, while decreasing drastically the computational cost, may fail in computing an accurate failure probability. In this paper, we focus on the control of the error introduced by a reduced basis surrogate model on the computation of the failure probability obtained by a Monte Carlo simulation. We propose a technique to determine bounds of this failure probability, as well as a strategy of enrichment of the reduced basis, based on limiting the bounds of the error of the failure probability for a multi‐material elastic structure. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
The article deals with one of inverse problems of elastography: knowing displacement of compressed tissue finds the distribution of Young’s modulus in the investigated specimen. The direct problem is approximated and solved by the finite element method. The inverse problem can be stated in different ways depending on whether the solution to be found is smooth or discontinuous. Tikhonov regularization with appropriate regularizing functionals is applied to solve these problems. In particular, discontinuous Young’s modulus distribution can be found on the class of 2D functions with bounded variation of Hardy–Krause type. It is shown in the paper that a variant of Tikhonov regularization provides for such discontinuous distributions the so-called piecewise uniform convergence of approximate solutions as the error levels of the data vanish. The problem of practical a posteriori estimation of the accuracy for obtained approximate solutions is under consideration as well. A method of such estimation is presented. As illustrations, model inverse problems with smooth and discontinuous solutions are solved along with a posteriori estimations of the accuracy.  相似文献   

17.
The goal of this study is to find the `safe' long term behavior of elasto-plastic structural materials subjected to fluctuating load (shortly `fatigue limit'). The materials whose fatigue limits are checked are: (a) materials reinforced with unidirectional stiff fibers; (b) materials with dilute amount of inclusions; (c) materials with minute porosity. To reach this goal we employ two different shakedown theorems: Melan's static shakedown theorem (1936) as the lower bound and Koiter's kinematic shakedown theorem (1960) as the upper bound. The solutions to the lower and upper bounds for the prescribed stress amplitude, (th)l.b. and (th)u.b., are expressed in a rigorous form with three parametric entities: (i) the volume fraction of the second phase in the base matrix phase, f, (ii) the quality of the `bond' between the two phases `m', (iii) the magnitude of the residual stress, `p', pre-existed in the material. The deviation between the two bounds represents the `uncertainty' in our knowledge of the actual safe/unsafe state, where the materials fail to withstand the alternating load. It is shown that in the considered three types of materials, at certain amount of residual stresses, the safe load amplitudes based on shakedown analysis are indeed higher than their corresponding elastic limits (at least by 5%, 10% and 25% respectively). The apparent advantage of using shakedown bounds to predict the safe/unsafe loading amplitude is that no prior information on the actual complex failure mechanisms is required and no empiricism is needed. However, empirical data which were found in the open literature are `falling' satisfactorily between the computed dual bounds.  相似文献   

18.
Verification of the computation of local quantities of interest, e.g. the displacements at a point, the stresses in a local area and the stress intensity factors at crack tips, plays an important role in improving the structural design for safety. In this paper, the smoothed finite element method (SFEM) is used for finding upper and lower bounds on the local quantities of interest that are outputs of the displacement field for linear elasticity problems, based on bounds on strain energy in both the primal and dual problems. One important feature of SFEM is that it bounds the strain energy of the structure from above without needing the solutions of different subproblems that are based on elements or patches but only requires the direct finite element computation. Upper and lower bounds on two linear outputs and one quadratic output related with elasticity—the local reaction, the local displacement and the J‐integral—are computed by the proposed method in two different examples. Some issues with SFEM that remain to be resolved are also discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
A posteriori error estimates and an adaptive refinement scheme of first‐order least‐squares meshfree method (LSMFM) are presented. The error indicators are readily computed from the residual. For an elliptic problem, the error indicators are further improved by applying the Aubin–Nitsche method. It is demonstrated, through numerical examples, that the error indicators coherently reflect the actual error. In the proposed refinement scheme, Voronoi cells are used for inserting new nodes at appropriate positions. Numerical examples show that the adaptive first‐order LSMFM, which combines the proposed error indicators and nodal refinement scheme, is effectively applied to the localized problems such as the shock formation in fluid dynamics. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
An efficient procedure to compute strict upper and lower bounds for the exact collapse multiplier in limit analysis is presented, with a formulation that explicitly considers the exact convex yield condition. The approach consists of two main steps. First, the continuous problem, under the form of the static principle of limit analysis, is discretized twice (one per bound) using particularly chosen finite element spaces for the stresses and velocities that guarantee the attainment of an upper or a lower bound. The second step consists of solving the resulting discrete non‐linear optimization problems. These are reformulated as second‐order cone programs, which allows for the use of primal–dual interior point methods that optimally exploit the convexity and duality properties of the limit analysis model. To benefit from the fact that collapse mechanisms are typically highly localized, a novel method for adaptive meshing is introduced. The method first decomposes the total bound gap as the sum of positive contributions from each element in the mesh and then refines those elements with higher contributions. The efficiency of the methodology is illustrated with applications in plane stress and plane strain problems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号