共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
采用有限元方法对典型的深腔薄壁7075超硬铝合金锥形件挤压成形过程进行了数值模拟仿真和分析.优化了预成形工艺参数及凸模结构.仿真结果表明:终成形时坯料的定位是决定其壁厚分布的关键因素;预成形时采用满压型方式,将凸模的锥角控制在14°~16°之间,利用凸、凹模自导向,可降低成形过程中的材料损伤,并可有效的提高终成形制品的壁厚均匀性.根据仿真的优化参数进行试验验证,结果表明:优化的挤压工艺参数及模具,提高了多工序挤压时深腔薄壁件壁厚的均匀性.该方法应用于壁厚为10mm,腔深270mm的超硬铝合金锥形件的挤压成形生产.在壁厚允差小于1.2mm的要求下,制品的合格率由原来的12%提高到了90%以上. 相似文献
6.
实验研究了液态浸渗后直接挤压过程模具与坯料内部的温度变化,结果表明,该过程中坯料冷却,凝固放大的大部分热量通过挤压凹模导出,挤压变形发生于被挤材料的固-液态或刚刚凝固状态。 相似文献
7.
反挤压凸模形状对挤压成形工艺的影响 总被引:3,自引:0,他引:3
通过数值模拟分析,比较了不同形状反挤压凸模对挤压过程中金属流动、挤压力以及凸模温升等方面的影响,进而得出凸模形状对反挤压成形工艺的影响,为挤压凸模及挤压件形状的优化设计提供一定的参考依据。 相似文献
8.
研究了冷轧对钢管壁厚不均的影响,比较了轧、拔方式减小钢管壁厚不均的作用,分析了冷轧大幅度减小钢管壁厚不均度的原因。 相似文献
9.
10.
分析了等温反挤压时产生抱模现象的原因 ,并从工艺和模具结构方面探讨了排除抱模的措施和防止抱模方法 ,对反挤压模的设计有一定的参考价值 相似文献
11.
12.
13.
洪深泽 《锻压装备与制造技术》1989,24(6):61-61
图示杯形件是挤压加工中最常见的产品.在当前技术条件下,并不是所有的杯形件都可以进行一次反挤压成形,而是受到挤压件许用变形程度等因素的限制,使得杯形件的孔深、孔径、底厚和壁厚等有一定的成形极限. 相似文献
14.
研究了挤压比为6时镁合金AZ91D坯料前期分别经过预挤,固溶时效,预挤+固溶时效,预挤+固溶时效+固溶之后对挤压管件组织和力学性能的影响。结果表明:预挤使AZ91D坯料得到细化的等轴晶粒,使挤压出的管件的屈服强度提高15.72%,伸长率提高170%;坯料经固溶时效处理后,β—Mg17Al12:从α—Mg固溶体中成断续状析出,挤压后管件的抗拉强度略有降低;坯料经预挤+固溶时效+固溶之后挤压管件,晶粒明显细化,且经二次固溶,析出相均匀弥散分布于基体中,固溶强化作用较第一次固溶时明显,抗拉强度提高7.5%,坯料的二次固溶和预挤的综合作用使得挤压管件的伸长率提高345%。 相似文献
15.
为解决热反挤压时坯料定位问题,采用外置定位钳的方式,将直径小于凹模内径的坯料放置在凹模中心,使反挤压过程中凸模的、坯料、凹模的中心在同一轴线上,保证金属均匀受力。运用Deform-3D软件,针对直径小于凹模内径时的坯料反挤压过程进行有限元数值模拟,分析了金属成形过程中的成形效果及应力分布,结果表明:模拟与工艺试验结果基本吻合,在热反挤压过程中,成形效果良好,金属等效应力分布均匀。经工艺试验验证,该定位方式操作简单,工件氧化皮较少,表面精度较高,适用于各类直径小于凹模内径的坯料定位,符合生产要求。 相似文献
16.
17.
采用三种不同穿轧锥形状的顶头,通过二次穿孔试验研究了毛管壁厚变化。结果表明:基于一定变形条件的公式所设计的顶头穿轧锥具有较好的减小毛管壁厚不均的作用,这与穿轧区后半程内穿轧管坯的单位压下量和轴向延伸较小且均匀有关。 相似文献
18.
针对锡含量9%~11%的耐磨Cu-Sn-Pb-Ni锡青铜合金,进行了800~950℃、不同工艺条件下的反挤压成形工艺试验,测试了经塑性变形后合金的密度、硬度和强度等性能,分析了不同工艺条件下合金的微观组织,并与传统熔铸法制备的合金性能及微观组织进行了对比。结果表明:传统熔铸法制备的合金密度和硬度分别为8.8893 g·cm~(-3)和116 HB,经不同温度反挤压塑性变形后,密度和硬度均有所提高;经900℃挤压后,密度和硬度分别达9.0409 g·cm~(-3)和139 HB;较之铸态下树枝晶明显,微观组织为α固溶体+(α+δ)共析体,挤压后合金组织晶粒明显细小和致密;在试验范围内,该合金的最佳反挤压塑性成形温度为900℃。 相似文献
19.
20.
研究了挤压温度对CuZnAl形状记忆合金等通道转角挤压(ECAP)过程的影响以及挤压后合金组织和性能的变化。结果表明,实验合金在室温下由于变形抗力过大无法进行ECAP处理,而在200℃、250℃、300℃、350℃时都能顺利进行挤压,但在200℃挤压时加工硬化严重,挤压过程无法多次进行;250℃虽无明显的加工硬化,但挤压多次时出现裂纹;350℃挤压晶粒长大比较严重,故本实验合金的最佳ECAP处理温度为300℃。合金在上述四个温度挤压后,硬度都大幅度提高,力学性能得到提高;晶粒大小虽无明显减小,但晶界更加清晰,晶粒更加规则,特别是300℃挤压8次后形成了具有大角度晶界的等轴晶,微观组织得到优化。 相似文献