首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Earlier studies have shown that poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blocks are compatible at 270 and 298 K, and that their Flory–Huggins interaction parameters have the same blending ratio dependence at both temperatures. At a much higher temperature (400 K), the behavior of PEO/PMMA blends is strikingly different as both components become incompatible, while the Flory–Huggins parameters are low. Here we investigate the effect of doping with nanoparticles on the degree of incompatibility of twelve miktoarm PEO‐b‐PMMA copolymers at 400 K. Since PEO tends to be semicrystalline and long chains aggregate easily, PEO‐rich and long‐chain copolymer blends feature the highest degree of incompatibility for all nanoparticle arrangements and present cubic phase morphologies. In addition, the largest nanoparticles can reinforce the microscopic phase separation of all PEO‐b‐PMMA copolymers. This shows that the main factor affecting the phase morphology is the size of the nanoparticles. Also, only the asymmetric Da3‐type PEO‐rich copolymers show a hexagonal cylindrical phase morphology, which illustrates the effect induced by the nanoparticles on the microscopic phase separation changes of the PEO‐b‐PMMA copolymers. These induced effects are also related to the composition and molecular architecture of the copolymers. © 2013 Society of Chemical Industry  相似文献   

2.
Sixteen poly(ethylene oxide)–polystyrene–poly(ethylene oxide) (PEO‐PS‐PEO) triblock copolymers were synthesized by anionic polymerization. They were characterized by gel permeation chromatography and proton NMR. The molecular weight of these 16 PEO‐PS‐PEO triblock copolymers ranged from 5100 to 13,300. The polystyrene (PS) block length was between 13 and 41. The PEO block length was between 41 and 106. The polydispersity index for these PEO‐PS‐PEO triblock copolymers were 1.05 ± 0.02. When using these stabilizers in the emulsion copolymerization of ethyl methacrylate and lauryl methacylate in propylene glycol, only a narrow window of stability was observed. Stable latexes were formed only when the molecular weights of the PEO blocks were within the range of 5300–7700 and the molecular weights of the PS blocks were 2000–4000. The stabilizer ability for these triblock copolymers was correlated with their molecular weight and conformation in propylene glycol. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1951–1962, 2001  相似文献   

3.
Di-block copolymers of poly(ethylene oxide) (PEO) and glycopolymers at three different pendant spacer lengths of glucose moiety were synthesized by deacetylation of pendant moieties of 2,3,4,6-tetra-O-acetyl-d-glucopyranosides which were prepared by reversible addition-fragmentation chain-transfer (RAFT) process. The water soluble deacetylated copolymers, PEO-b-poly(acryl-d-glucopyranoside) (PEO-b-PAG, 2a), PEO-b-poly[4′-(acryloxy)butyl-d-glucopyranoside] (PEO-b-PABG, 2b), and PEO-b-poly[6′-(acryloxy)hexyl-d-glucopyranoside] (PEO-b-PAHG, 2c) were characterized in comparison with acetylated copolymers by spectroscopic and gel permeation chromatography methods. In order to assess the biocompatibility of these three di-block copolymers, the adhesion (%), viability (%), and proliferation assays were carried out in MC3T3 cells in-vitro at different concentrations from 10 nM to 1000 μM. Qualitative analysis of cell cytoskeletal organization was obtained by immunostaining with talin and integrin α5. It was clearly indicative of well spreading of cells in the presence of all glycopolymers at lower concentrations but with an increase in the concentration (10 and 100 μM) showed significant change in the cell surface morphologies, despite having good cell adhesion and viability as compared to the control conditions. The use of di-block glycolpolymers at?≤?100 μM of the concentration showed very good osteoblast cells adhesion and viability response; however at higher concentrations (1000 μM) of glycopolymers > 80% of cells lost their viability.  相似文献   

4.
A series of well‐defined and property‐controlled polystyrene (PS)‐b‐poly(ethylene oxide) (PEO)‐b‐polystyrene (PS) triblock copolymers were synthesized by atom‐transfer radical polymerization, using 2‐bromo‐propionate‐end‐group PEO 2000 as macroinitiatators. The structure of triblock copolymers was confirmed by 1H‐NMR and GPC. The relationship between some properties and molecular weight of copolymers was studied. It was found that glass‐transition temperature (Tg) of copolymers gradually rose and crystallinity of copolymers regularly dropped when molecular weight of copolymers increased. The copolymers showed to be amphiphilic. Stable emulsions could form in water layer of copolymer–toluene–water system and the emulsifying abilities of copolymers slightly decreased when molecular weight of copolymers increased. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 727–730, 2006  相似文献   

5.
The time‐ and temperature‐related crystallization process for the structure transitions of asymmetric crystalline‐crystalline diblock copolymers from the melt to crystallites was investigated with synchrotron simultaneous small‐angle/wide‐angle X‐ray scattering. Two asymmetric poly(ethylene oxide)‐poly(ε‐caprolactone) diblock copolymers were chosen. It is found in the course of the copolymer crystallization that the shorter blocks are uncrystallizable in both of the asymmetric diblock copolymers and final lamellar structures are formed in both of them. The final lamellar structure was confirmed from atomic force microscopy observations. The small‐angle X‐ray scattering data collected were analyzed with different methods for the early stage of crystallization. Guinier and Debye‐Bueche plots indicate that there are neither isolated domains nor correlated domains formed before the formation of lamellae in the asymmetric diblock copolymers during the crystallization process. The structure evolution was calculated according to the correlation function, and the soft nanoconfined crystallization behavior is discussed. Copyright © 2012 Society of Chemical Industry  相似文献   

6.
Amphiphilic block comb‐shaped copolymers, poly[poly(ethylene oxide) methyl ether acrylate]‐block‐polystyrene [P(A‐MPEO)‐block‐PSt] with PSt as a handle, were successfully synthesized via a macromonomer technique. The reaction of MPEO with acryloyl chloride yielded a macromonomer, A‐MPEO. The macroinitiator PSt capped with the dithiobenzoate group (PSt‐SC(S)Ph) was prepared by reversible addition–fragmentation transfer (RAFT) polymerization of styrene in the presence of benzyl dithiobenzoate, and used as macroinitiator in the controlled radical block copolymerization of A‐MPEO at room temperature under 60Co irradiation. After the unreacted macromonomer A‐MPEO had been removed by washing with hot saturated saline water, block comb‐shaped copolymers were obtained. Their structure was characterized by 1H NMR spectroscopy and gel permeation chromatography. The phase transition and self‐assembling behaviour were investigated by atomic force microscope and differential scanning calorimetry. Copyright © 2004 Society of Chemical Industry  相似文献   

7.
Graft copolymers (polystyrene-graft-polyoxyethylene) (PS-graft-PEO) were prepared by the dispersion copolymerization of methacryloyl-terminated polyoxyethylene macromonomer and styrene initiated by an oil-soluble initiator (dibenzoyl peroxide, DBP). The apparent molecular weights of graft copolymers measured by size exclusion chromatography in tetrahydrofuran were found to be proportional to the -0·8th power of DBP concentration. This reaction order supports the termination of growing radicals by a first order radical loss process. The molecular weight distribution estimated from the size exclusion chromatography (SEC) data was found to decrease slightly with DBP concentration and to drop rapidly with macromonomer concentration. This was attributed to chain transfer events and to the increase of particle number: the higher the particle number the lower the monomer concentration in the particles. The bulkiness of the macromonomer molecules and the high segment density around the propagating reaction loci hinder the incorporation of macromonomer molecules into a copolymer growing chain. ©1997 SCI  相似文献   

8.
Well‐defined polystyrene (PS)‐b‐poly(ethylene oxide) (PEO)‐b‐PS triblock copolymers were synthesized by atom‐transfer radical polymerization (ATRP), using C—X‐end‐group PEO as macroinitiators. The triblock copolymers were characterized by infrared spectroscopy, nuclear magnetic resonance spectroscopy, and gel permeation chromatography. The experimental results showed that the polymerization was controlled/living. It was found that when the number‐average molecular weight of the macroinititors increased from 2000 to 10,000, the molecular weight distribution of the triblock copolymers decreased roughly from 1.49 to 1.07 and the rate of polymerization became much slower. The possible polymerization mechanism is discussed. According to the Cu content measured with atomic absorption spectrometry, the removal of catalysts, with CHCl3 as the solvent and kaolin as the in situ absorption agent, was effective. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2882–2888, 2000  相似文献   

9.
In order to develop blood compatible membranes with controlled porosity, we have fabricated and examined the properties of physical interpenetrating network (PIN) of chitosan and poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) (PEO/PPO/PEO) triblock copolymers (Pluronics®). Degree of equilibrium swelling, scanning electron microscopy, and electron spectroscopy for chemical analysis (ESCA) were used to characterize the bulk and surface properties. Vitamin B12 and human serum albumin were used as permeability markers. Platelet adhesion and activation were used to determine the blood‐interaction properties of the PIN membranes. Unlike chitosan membranes that were nonporous, the chitosan‐Pluronic PIN membranes were highly porous with the pore size, depending on the type of incorporated Pluronic polyol. ESCA results showed a significant increase in the ? C ? O? signal of C1s spectra on the PIN membranes that correlates with the presence of PEO chains on the surface. The permeability coefficients of vitamin B12 and albumin were higher in the chitosan‐Pluronic PIN membranes than in the control. The number of adherent platelets and the extent of activation were significantly reduced on the chitosan‐Pluronic PIN membranes. The decrease in platelet adhesion and activation correlated positively with the PEO chain length of the incorporated Pluronic polyols. The results of this study show that chitosan‐Pluronic PIN membranes offer a blood‐compatible alternative with a higher‐molecular‐weight cutoff for use in hemodialysis and related applications. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1274–1284, 2001  相似文献   

10.
Phenolic block copolymers have been prepared by condensation of p-cresol-formaldehyde and p-toluidine-formaldehyde homopolymer chains. The compositions of the copolymers have been determined by electrometric titrations in non-aqueous solvents. Efforts have been made to correlate structural features of the copolymers, such as intramolecular hydrogen bonding, and the probable number of phenolic and aromatic amine units in the respective blocks of the copolymer chain with their titration curves.  相似文献   

11.
Yong Zhang 《Polymer》2008,49(5):1211-1219
Novel bipyridine-based aminoalkyl-polyfluorene and their corresponding rhenium complex-contained copolymers with different rhenium complex contents in polymer backbone were synthesized by Suzuki polymerization and post-polymerization, respectively. The aminoalkyl-polyfluorenes have good solubility in organic solvents and also are able to dissolve in methanol by adding a few drops of acetic acid. The solubility in polar solvents such as alcohol provides a great advantage in fabrication of multi-layer PLEDs. However, the rhenium complex-based copolymers become insoluble in common organic solvents; instead have a good solubility in polar solvents, such as methanol and DMF. The optoelectronic and electroluminescent properties of these copolymers (bipyridine- and rhenium-based copolymers) were investigated. The electroluminescent properties of these copolymers were found to have similar device performances by using high work function metal (Al) and low work function metal (Ba) as cathodes. We also found that these rhenium copolymers can be used as the electron transport layer in PLED. After inserting a thin rhenium copolymer layer between emission layer (P-PPV or PFO-DBT15) and cathode, a great improvement in EL performance could be achieved.  相似文献   

12.
The bulk of literature on phospholipid membrane interactions with non-ionic amphiphilic block copolymers deals with ABA triblock copolymers of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide). This is partially the result of their commercial availability. In recent years novel block copolymers have been synthesized and their interactions with phospholipids structured as Langmuir monolayers, liposomes, bilayer lipid membranes, tethered bilayers, and living cells have been studied. This review describes some new block copolymers with potential to interact with phospholipids. There is a tremendous progress in synthesis of amphiphilic block copolymers triggered by new controlled polymerization techniques as atom transfer radical polymerization or nitroxide mediated polymerization and by the possibility to ‘click’ preformed blocks together using quantitative reactions of functional endgroups. A special focus is given to novel water soluble amphiphilic triblock copolymers of poly(glycerol monomethacrylate)-b-poly(propylene oxide)-b-poly(glycerol monomethacrylate) and their interactions with phosphatidylcholine lipids. Also block copolymers containing hydrophobic blocks with perfluoroalkyl groups are discussed since they are special in a sense that their fluorophilic blocks are neither hydrophilic nor oleophilic as this is the case for conventional amphiphilic block copolymers. Experimental methods to study block copolymer–phospholipid interactions are summarized and selected results based on special experimental techniques such as isothermal titration calorimetry, infrared reflection absorption spectroscopy and ion conductance are presented. This work is intended to convey a better quantitative understanding of amphiphilic block copolymers used for in vitro and in vivo experiments in medicine and pharmacy.  相似文献   

13.
宋洁尘  夏青  徐宇兴  谭强强 《化工进展》2021,40(9):5045-5060
全固态锂离子电池具有安全性高、电化学性能优异等优点,但存在电极与电解质界面相容性差、室温离子电导率低等问题。本文总结了以上问题产生的原因及解决方案。对于正极界面,可复合正极材料与固态电解质、构造三维多孔结构固态电解质或在界面处引入缓冲层。对于负极界面,可设计界面层、原位聚合生成固态电解质、构造固态电解质骨架或使用自愈合和弹性固态电解质。对于固态电解质自身,以聚氧化乙烯(PEO)固态聚合物电解质为例,可添加增塑剂、无机陶瓷填料或构造聚合物共混物与嵌段共聚物。最后,对今后的研究方向提出了建议:应注重优化电极/固态电解质界面层;探索锂离子传输机理;构建具有高离子电导率的固态电解质等。  相似文献   

14.
Random copolymers of styrene and substituted styrenes bearing arylamino substituents as fluorophore units have been obtained. Their photophysical properties have been investigated by measuring absorption and emission spectra as in solutions as solid-state. All copolymers proved to possess absolute quantum yields up to 0.39 in solution and up to 0.05 in solid-state, depending on their fluorophore substituents. Fluorescence studies have shown that these copolymers show a highly sensitive response towards a diversity of nitroaromatic compounds, both in solutions and in a vapor phase. The detection limits for these compounds towards model nitroaromatic explosives in dichloromethane solution proved to be in the range from 10−6 to 10−7 mol/L. The fluorescent materials prepared by electrospinning of synthesized copolymers have been evaluated as sensor materials for detecting nitrobenzene vapor for our hand-made sniffer with detection limits of 0.5 ppm during 100-s exposure to the vapor.  相似文献   

15.
Low‐crystalline random and gradient P(EO‐co‐PO) copolymers and amorphous PPO and PBO of high molecular weight were synthesized by anionic coordination polymerization. Polymer gel electrolytes based on these (co)polymers were prepared and tested for long‐term performance of DSSC. The DSSC based on P(EO‐co‐PO) copolymers have longer life time compared to the homo‐PEO‐ and homo‐PPO‐based DSSC, respectively. The cells containing the chemically crosslinked copolymer gel exhibited a high efficiency of 6% after 25 d performance, whereas the solar cells based on physically crosslinked copolymer gel showed fast degradation.

  相似文献   


16.
《云南化工》2016,(3):45-51
芴衍生物具有吸电子性,作为电子受体在D-A共聚体的研究中备受关注。在D-A共聚体中,π-电子供体和π-电子受体通过π键或σ键交替连接,其共平面的共轭结构有利于降低体系的能隙;以芴、芴酮、9-二氰基亚甲基芴衍生物为电子受体单元的推拉型(D-A型)化合物和共聚物,具有优异的光电性能、电子传输性能、较好的电子和空穴迁移率及在空气中极好的稳定性等。主要对基于芴、芴酮、9-二氰基亚甲基芴的D-A化合物及其D-A共聚物的最新研究进展做简要综述。  相似文献   

17.
In this review, recent progresses in the synthesis of new cellulose derivatives and graft copolymers are summarized. Cellulose derivatives synthesized in new cellulose solvents, such as ionic liquids and NaOH/urea, and the regioselective synthesis of cellulose derivatives have attracted increasing attention in recent years and could be a more active field for cellulose in the future. Cellulose graft copolymers with well‐defined architectures synthesized by controlled/living radical polymerizations such as atomic transfer radical polymerization and their stimuli‐induced assembly have been investigated extensively. Stimuli‐responsive functional materials can be fabricated using either cellulose derivatives or graft copolymers, and they can be used as biosensors and carriers for controlled delivery of drugs and genes. The fabrication of functional materials with cellulosic blocks and their applications have a bright future. © 2013 Society of Chemical Industry  相似文献   

18.
Thermo-sensitive nanosized structures have been prepared in water from poly(methyl vinyl ether)-block-poly(isobutyl vinyl ether) (PMVE-b-PIBVE) block copolymers. The composition and the architecture (diblock and triblock architectures) of the PMVE-b-PIBVE copolymers have been varied. The investigated copolymers had an asymmetric composition with a major PMVE block. While the PIBVE blocks are hydrophobic, the PMVE blocks are hydrophilic at room temperature and become hydrophobic above their demixing temperature (around 36 °C) as a result of the lower critical solution temperature (LCST) behavior. At room temperature, the amphiphilic copolymers aggregate in water above a critical micelle concentration, which has been experimentally measured by hydrophobic dye solubilization. The hydrodynamic diameter of the structures formed above the cmc has been measured by dynamic light scattering (DLS) while their morphology has been studied by transmission electron microscopy (TEM). 1H NMR measurements in D2O at room temperature reveal that the aggregates contain PIBVE insoluble regions surrounded by solvated PMVE chains. These investigations have shown that polydisperse spherical micelles are formed for asymmetric PMVE-b-PIBVE copolymers containing at least 9 IBVE units. For copolymers containing less IBVE units, loose aggregates are formed.Finally, the thermo-responsive, reversible properties of these structures have been investigated. Above the cloud point of the copolymers, the loose aggregates precipitate while the micelles form large spherical structures.  相似文献   

19.
K.A. O'Leary 《Polymer》2006,47(4):1226-1244
The physical properties of n-alkyl acrylate copolymers containing two crystallizeable monomers, including thermal characteristics, structure as determined by small angle X-ray scattering, and gas permeability as a function of temperature, were examined in detail and compared to the corresponding homopolymers. The copolymers exhibit co-crystallization and, thus, for a given average side-chain length have comparable melting temperatures as the corresponding homopolymers. For a given side-chain length, the copolymers have somewhat lower heats of fusion than the corresponding homopolymers because of a reduction in crystallite size as revealed by SAXS. This depression in crystallinity is reflected in the permeability data for the copolymers. Poly(n-alkyl acrylates) exhibit a ‘jump’ in their gas permeability at the Tm of the side-chain lengths that is mainly caused by a switch in the side-chain morphology from crystalline to amorphous upon melting. The depression in crystallinity for the copolymers results in a smaller permeation jump. The jump breadth correlates with the melting endotherms for these polymers as determined by DSC. Ultimately, the melting endotherms for these copolymer systems provide an excellent tool for predicting permeability changes across the melting region.  相似文献   

20.
Copolymers of itaconic acid with methyl methacrylate, P(ItA–MMA), have been synthesized as promising positive working electron beam resists.1,2 However, attempts to obtain greater electron beam sensitivity by increasing the itaconic acid content and initial molecular weight of these copolymers have been hindered by difficulties in synthesizing itaconic acid copolymers with an ItA content greater than 50 mol% or with a molecular weight above 250,000. The usefulness of the MMA–ItA copolymers is also limited by their susceptibility to anhydride formation which makes this resist very sensitive to prebake conditions and aging times. To overcome these limitations and to develop resist materials with improved sensitivity, alkyl ester derivatives of itaconic acid have been synthesized, both as homopolymers and as copolymers with methyl methacrylate. The electron-beam chain scissioning yields, G(s), of these derivatives have been determined, and the most promising of these copolymers and homopolymers have been evaluated for lithographic performance. The G(s) values of the alkyl itaconate copolymers depend greatly on the structure of the alkyl group. The mono-alkyl itaconate copolymers exhibit G(s) values 2–3 times greater than the corresponding dialkyl itaconate copolymers. In particular, copolymers of monomethyl itaconate (MeI) with methyl methacrylate are found to be promising resist materials with high sensitivities and compatability with processing conditions. A trend in sensitivity is observed for a series of MMA–MeI copolymers ranging from 20 to 85 mol % MeI, with a maximum sensitivity observed for the 57 and 73% MeI compositions. These copolymers exhibit improved sensitivity over that of the itaconic acid copolymers. Anhydride is formed less readily from the MeI copolymers than from the ItA copolymers, improving the stability of the resist for process conditions. Areas exposed in P(MMA–73 mol % MeI) at 4 μC/cm2 (20 kV) were developed with less than 10% thinning of unexposed resist and with a contrast (γ) of 2. Vertical walls were observed for 1 μm wide lines using P(MMA μ73% MeI) at a dose of about 6 μC/cm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号