首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On the basis of the projection method, a higher order compact finite difference algorithm, which possesses a good spatial behavior, is developed for solving the 2D unsteady incompressible Navier–Stokes equations in primitive variable. The present method is established on a staggered grid system and is at least third‐order accurate in space. A third‐order accurate upwind compact difference approximation is used to discretize the non‐linear convective terms, a fourth‐order symmetrical compact difference approximation is used to discretize the viscous terms, and a fourth‐order compact difference approximation on a cell‐centered mesh is used to discretize the first derivatives in the continuity equation. The pressure Poisson equation is approximated using a fourth‐order compact difference scheme constructed currently on the nine‐point 2D stencil. New fourth‐order compact difference schemes for explicit computing of the pressure gradient are also developed on the nine‐point 2D stencil. For the assessment of the effectiveness and accuracy of the method, particularly its spatial behavior, a problem with analytical solution and another one with a steep gradient are numerically solved. Finally, steady and unsteady solutions for the lid‐driven cavity flow are also used to assess the efficiency of this algorithm. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
In this work, we propose Runge–Kutta time integration schemes for the incompressible Navier–Stokes equations with two salient properties. First, velocity and pressure computations are segregated at the time integration level, without the need to perform additional fractional step techniques that spoil high orders of accuracy. Second, the proposed methods keep the same order of accuracy for both velocities and pressures. The segregated Runge–Kutta methods are motivated as an implicit–explicit Runge–Kutta time integration of the projected Navier–Stokes system onto the discrete divergence‐free space, and its re‐statement in a velocity–pressure setting using a discrete pressure Poisson equation. We have analysed the preservation of the discrete divergence constraint for segregated Runge–Kutta methods and their relation (in their fully explicit version) with existing half‐explicit methods. We have performed a detailed numerical experimentation for a wide set of schemes (from first to third order), including implicit and IMEX integration of viscous and convective terms, for incompressible laminar and turbulent flows. Further, segregated Runge–Kutta schemes with adaptive time stepping are proposed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
This paper examines a new Galerkin method with scaled bubble functions which replicates the exact artificial diffusion methods in the case of 1-D scalar advection–diffusion and that leads to non-oscillatory solutions as the streamline upwinding algorithms for 2-D scalar advection–diffusion and incompressible Navier–Stokes. This method retains the satisfaction of the Babuska–Brezzi condition and, thus, leads to optimal performance in the incompressible limit. This method, when, combined with the recently proposed linear unconditionally stable algorithms of Simo and Armero (1993), yields a method for solution of the incompressible Navier–Stokes equations ideal for either diffusive or advection-dominated flows. Examples from scalar advection–diffusion and the solution of the incompressible Navier–Stokes equations are presented.  相似文献   

4.
This paper deals with the use of the asymptotic numerical method (ANM) for solving non‐linear problems, with particular emphasis on the stationary Navier–Stokes equation and the Petrov–Galerkin formulation. ANM is a combination of a perturbation technique and a finite element method allowing to transform a non‐linear problem into a succession of linear ones that admit the same tangent matrix. This method has been applied with success in non‐linear elasticity and fluid mechanics. In this paper, we apply the same kind of technique for solving Navier–Stokes equation with the so‐called Petrov–Galerkin weighting. The main difficulty comes from the fact that the non‐linearity is no more quadratic and it is not evident, in this case, to be able to compute a large number of terms of the perturbation series. Several examples of fluid mechanic are presented to demonstrate the performance of such a method. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents the development and application of the finite node displacement (FiND) method to the incompressible Navier–Stokes equations. The method computes high‐accuracy nodal derivatives of the finite element solutions. The approach imposes a small displacement to individual mesh nodes and solves a very small problem on the patch of elements surrounding the node. The only unknown is the value of the solution ( u , p) at the displaced node. A finite difference between the original and the perturbed values provides the directional derivative. Verification by grid refinement studies is shown for two‐dimensional problems possessing a closed‐form solution: a Poiseuille flow and a flow mimicking a boundary layer. For internal nodes, the method yields accuracy slightly superior to that of the superconvergent patch recovery (SPR) technique of Zienkiewicz and Zhu (ZZ). We also present a variant of the method to treat boundary nodes. The local discretization is enriched by inserting an additional mesh point very close to the boundary node of interest. Computations show that the resulting nodal derivatives are much more accurate than those obtained by the ZZ SPR technique. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Conventional approaches for solving the Navier–Stokes equations of incompressible fluid dynamics are the primitive‐variable approach and the vorticity–velocity approach. In this paper, an alternative approach is presented. In this approach, pressure and one of the velocity components are eliminated from the governing equations. The result is one higher‐order partial differential equation with one unknown for two‐dimensional problems or two higher‐order partial differential equations with two unknowns for three‐dimensional problems. A meshless collocation method based on radial basis functions for solving the Navier–Stokes equations using this approach is presented. The proposed method is used to solve a two‐ and a three‐dimensional test problem of which exact solutions are known. It is found that, with appropriate values of the method parameters, solutions of satisfactory accuracy can be obtained. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
The present study aims to accelerate the non‐linear convergence to incompressible Navier–Stokes solution by developing a high‐order Newton linearization method in non‐staggered grids. For the sake of accuracy, the linearized convection–diffusion–reaction finite‐difference equation is solved line‐by‐line using the nodally exact one‐dimensional scheme. The matrix size is reduced and, at the same time, the CPU time is considerably saved owing to the reduction of stencil points. This Newton linearization method is computationally efficient and is demonstrated to outperform the classical Newton method through computational exercises. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
The generalized integral transform technique (GITT) is employed in the solution of incompressible laminar channel flows as formulated by the steady‐state Navier–Stokes and continuity equations under the primitive variables mathematical representation. A hybrid numerical–analytical solution is developed based on eigenfunction expansions in one space co‐ordinate and error‐controlled numerical solution of the resulting system of coupled ordinary differential equations in the remaining space direction. The approach is illustrated for developing flow between parallel‐plates with uniform and irrotational inlet flow condition. The conventional Poisson‐type equation for the pressure field with appropriate boundary conditions is also transformed and simultaneously solved with the momentum equation along the longitudinal direction, by considering eigenvalue problems for each of the two potentials, defined in the transversal direction. The transversal velocity component is then explicitly determined from the continuity equation. Numerical results of the longitudinal velocity component and friction factor fields are reported to illustrate the convergence behaviour and user prescribed error control inherent to the proposed hybrid approach. Critical comparisons with previous contributions on the same method that made use of the streamfunction‐only formulation are also provided. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
A new method of solving the Navier–Stokes equations efficiently by reducing their number of modes is proposed in the present paper. It is based on the Karhunen–Loève decomposition which is a technique of obtaining empirical eigenfunctions from the experimental or numerical data of a system. Employing these empirical eigenfunctions as basis functions of a Galerkin procedure, one can a priori limit the function space considered to the smallest linear subspace that is sufficient to describe the observed phenomena, and consequently reduce the Navier–Stokes equation defined on a complicated geometry to a set of ordinary differential equations with a minimum degree of freedom. The present algorithm is well suited for the problems of flow control or optimization, where one has to compute the flow field repeatedly using the Navier–Stokes equation but one can also estimate the approximate solution space of the flow field based on the range of control variables. The low-dimensional dynamic model of viscous fluid flow derived by the present method is shown to produce accurate flow fields at a drastically reduced computational cost when compared with the finite difference solution of the Navier–Stokes equation. © 1998 John Wiley & Sons, Ltd.  相似文献   

10.
A new multi-grid (two-grid) pseudospectral element method has been carried out for solution of incompressible flow in terms of primitive variable formulation. The main objective of the proposed method is to apply the multi-grid technique solving the incompressible flow problems associated with three commonly encountered multi-grid environments. In domain decomposition terminology, it includes (I) partially overlapped subdomains, each of which has same types of grids; (II) partially overlapped subdomains, each of which has different types of grids; (III) local adaptive subdomains fully overlapped with the original computational domain (composite grids). The approach for flow problems, complex geometry or not, is to first divide the computational domain into a number of subdomains with the inter-overlapping area (partially or fully overlapped). In categories I and II, the fine-grid or coarse-grid subdomains can be defined by their representation, while in category III the fine-grid or coarse-grid subdomains are defined as usual. Next, implement the Schwarz Alternating Procedure (SAP) to exchange the data among subdomains, where the coarse-grid correction is used to remove the high frequency error that occurs when the data interpolation from the fine-grid subdomain to the coarse-grid subdomain is conducted. The strategy behind the coarse-grid correction is to adopt the operator of the divergence of velocity field, which intrinsically links the pressure equation, into this process. The solution of each subdomain can be efficiently solved by the direct (or iterative) eigenfunction expansion technique or preconditioned method with the least storage requirement, i.e. O(N2) in 2-D. Numerical results of (i) driven cavity flow (Re = 100,400) with Cartesian grids (category I) in each subdomain, (ii) driven cavity flow (Re = 3200) with local adaptive grids (category III) in each subdomain, and (iii) flow over a cylinder (Re = 250) with ‘O’ grids in one subdomain and Cartesian grids in another (category II) will be presented in the paper to account for the versatility of the proposed multi-grid method.  相似文献   

11.
The design of efficient flapping wings for human engineered micro aerial vehicles (MAVs) has long been an elusive goal, in part because of the large size of the design space. One strategy for overcoming this difficulty is to use a multifidelity simulation strategy that appropriately balances computation time and accuracy. We compare two models with different geometric and physical fidelity. The low‐fidelity model is an inviscid doublet lattice method with infinitely thin lifting surfaces. The high‐fidelity model is a high‐order accurate discontinuous Galerkin Navier–Stokes solver, which uses an accurate representation of the flapping wing geometry. To compare the performance of the two methods, we consider a model flapping wing with an elliptical planform and an analytically prescribed spanwise wing twist, at size scales relevant to MAVs. Our results show that in many cases, including those with mild separation, low‐fidelity simulations can accurately predict integrated forces, provide insight into the flow structure, indicate regions of likely separation, and shed light on design–relevant quantities. But for problems with significant levels of separation, higher‐fidelity methods are required to capture the details of the flow field. Inevitably high‐fidelity simulations are needed to establish the limits of validity of the lower fidelity simulations.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
The last decade has seen the development of Lattice-Gas (LG) schemes as a complementary if not alternative method for the simulation of moderate Reynolds-Number Navier–Stokes flow. After a short theoretical introduction we present a detailed discussion of implementation features for a specific 2D-LG algorithm, which runs in parallel on a workstation-cluster, discuss simulation results and compare one of them to experimental studies. Finally, we attempt to point out present problems and perspectives of these methods.  相似文献   

13.
We present a versatile high‐level programming‐language implementation of non‐linear topology optimization. Our implementation is based on the commercial software package FEMLAB, and it allows a wide range of optimization objectives to be dealt with easily. We exemplify our method by studies of steady‐state Navier–Stokes flow problems, thus extending the work by Borrvall and Petersson on topology optimization of fluids in Stokes flow (Int. J. Num. Meth. Fluids 2003; 41 :77–107). We analyse the physical aspects of the solutions and how they are affected by different parameters of the optimization algorithm. A complete example of our implementation is included as FEMLAB code in an appendix. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
Performances of method of lines (MOL) and finite difference method (FDM) were tested from the viewpoints of solution accuracy and central processing unit (CPU) time by applying them to the solution of time‐dependent 2‐D Navier–Stokes equations for transient laminar flow without/with sudden expansion and comparing their results with steady‐state numerical predictions and measurements previously reported in the literature. Predictions of both methods were obtained on the same computer by using the same order of spatial discretization and the same uniform grid distribution. Axial velocity and pressure distribution in pipe flow and steady‐state reattachment lengths in sudden expansion flow on uniform grid distribution predicted by both methods were found to be in excellent agreement. Transient solutions of both methods for pipe flow problem show favourable comparison and are in accordance with expected trends. However, non‐physical oscillations were produced by both methods in the transient solution of sudden expansion pipe flow. MOL was demonstrated to yield non‐oscillatory solutions for recirculating flows when intelligent higher‐order discretization scheme is utilized for convective terms. MOL was found to be superior to FDM with respect to CPU and set‐up times and its flexibility for incorporation of other conservation equations. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents a variational multiscale residual-based stabilized finite element method for the incompressible Navier–Stokes equations. Structure of the stabilization terms is derived based on the two level scale separation furnished by the variational multiscale framework. A significant feature of the new method is that the fine scales are solved in a direct nonlinear fashion, and a definition of the stabilization tensor τ is derived via the solution of the fine-scale problem. A computationally economic procedure is proposed to evaluate the advection part of the stabilization tensor. The new method circumvents the Babuska–Brezzi (inf–sup) condition and yields a stable formulation for high Reynolds number flows. A family of equal-order pressure-velocity elements comprising 4-and 10-node tetrahedral elements and 8- and 27-node hexahedral elements is developed. Convergence rates are reported and accuracy properties of the method are presented via the lid-driven cavity flow problem.  相似文献   

16.
We develop a parallel fully implicit domain decomposition algorithm for solving optimization problems constrained by time‐dependent nonlinear partial differential equations. In particular, we study the boundary control of unsteady incompressible Navier–Stokes equations. After an implicit discretization in time, a fully coupled sparse nonlinear optimization problem needs to be solved at each time step. The class of full space Lagrange–Newton–Krylov–Schwarz algorithms is used to solve the sequence of optimization problems. Among optimization algorithms, the fully implicit full space approach is considered to be the easiest to formulate and the hardest to solve. We show that Lagrange–Newton–Krylov–Schwarz, with a one‐level restricted additive Schwarz preconditioner, is an efficient class of methods for solving these hard problems. To demonstrate the scalability and robustness of the algorithm, we consider several problems with a wide range of Reynolds numbers and time step sizes, and we present numerical results for large‐scale calculations involving several million unknowns obtained on machines with more than 1000 processors. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
18.
This paper describes a new computational model developed to solve two‐dimensional incompressible viscous flow problems in external flow fields. The model based on the Navier–Stokes equations in primitive variables is able to solve the infinite boundary value problems by extracting the boundary effects on a specified finite computational domain, using the pressure projection method. The external flow field is simulated using the boundary element method by solving a pressure Poisson equation that assumes the pressure as zero at the infinite boundary. The momentum equation of the flow motion is solved using the three‐step finite element method. The arbitrary Lagrangian–Eulerian method is incorporated into the model, to solve the moving boundary problems. The present model is applied to simulate various external flow problems like flow across circular cylinder, acceleration and deceleration of the circular cylinder moving in a still fluid and vibration of the circular cylinder induced by the vortex shedding. The simulation results are found to be very reasonable and satisfactory. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
A new Petrov-Galerkin method for the incompressible Navier-Stokes equations is presented. The use of the so-called ‘optimal upwind’ parameter in multidimensions is justified by a time-scale analysis of the relevant physical processes. The resulting procedure circumvents the Babu?ka-Brezzi condition and allows equal order interpolation for velocity and pressure to be used.  相似文献   

20.
We consider the Galerkin finite element method for the incompressible Navier–Stokes equations in two dimensions, where the finite‐dimensional space(s) employed consist of piecewise polynomials enriched with residual‐free bubble functions. To find the bubble part of the solution, a two‐level finite element method (TLFEM) is described and its application to the Navier–Stokes equation is displayed. Numerical solutions employing the TLFEM are presented for three benchmark problems. We compare the numerical solutions using the TLFEM with the numerical solutions using a stabilized method. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号