首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The one-pot method polymerization of polyimide was carried out from 3,3′,4,4′-biphenyl tetracarboxylic dianhydride (BPDA) and 4,4′-oxydianiline (ODA) by the use of p-chloro-phenol as the solvent. The behavior of the polymerization was compared with that of the two-step method. The imidization reaction in the one-pot method proceeds completely in this system at even a low temperature such as 100°C. In the course of the film preparation from the solution, the embrittlement occurs when the film is prepared from polyamic acid solution, while it does not occur in the case of that from the solution of the one-pot method. A molecular weight of polyimide film is almost the same as that of precursor polyimide in the solution. In the same way, that of polyimide film is almost the same as that of precursor polyamic acid. The mechanical properties of the polyimide film prepared by the one-pot method are similar to those by the two-step method. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
Abstract

A family of random co-poly(amic acid)s containing 4,4′-oxydianiline (ODA) moiety were synthesised in N,N′-dimethylacetamide. The co-poly(amic acid) solutions were used as spinning dope for dry jet wet spinning process into as spun poly(amic acid) (PAA) fibres. The polyimide (PI) fibres were obtained from PAA fibres after being imidised and drawn in furnace. The processability and mechanical properties of the fibres were notably improved by incorporating ODA into 3,3′,4,4′-biphenyltetracarboxylic dianhydride/p-phenylenediamine (BPDA/PPD) backbone. The best strength and modulus of BPDA/PPD/ODA PI fibre (diamine mole ratio of PPD/ODA?=?85∶15) attained 2·25 and 96·5 GPa respectively, which were approximately three times the tenacity of the BPDA/PPD PI fibre. The SEM image showed that the cross-section of each stage fibres was round and void free. In addition, ‘skin–core’ and microfibrillar structure were not observed. The thermal properties of PI fibres were also investigated. The results showed that the PI fibres have excellent thermal stability; moreover, the dimensional stability and structural homogeneity of the fibres were significantly improved by heat drawn stage. Tg was found to be ~290°C by thermomechanical and dynamic mechanical analyses. The X-ray (wide angle X-ray diffraction and small angle X-ray scattering) experiments indicated that the ordering degree of longitudinal and lateral stacks, as well as the molecular orientation of PI fibre, was improved in the preparation process of fibres. Furthermore, the mechanical properties of fibres are profoundly affected by the heat drawn conditions.  相似文献   

3.
采用3,3′,4,4′-联苯四甲酸二酐/4,4′-二氨基二苯醚(BPDA/ODA)和1,2,4,5-均苯四甲酸二酐(PMDA)/ODA聚酰胺酸共混的方法制备了聚酰亚胺(PI)薄膜,研究了共混体系中共混比对薄膜的力学性能、动态力学性能、介电性能等的影响。用万能材料试验机、动态力学分析仪和阻抗分析仪研究了其力学性能、热性能和电性能与共混比例之间的关系。结果表明,这种共混PI薄膜可以保持良好的力学性能,特别是当选择了合适的共混比例时,PI薄膜的断裂伸长率会得到明显的提高,同时仍然保持其良好的耐热性能,介电损耗陡升温度在250 ℃以上,有望在240级以上漆包线的生产中得到广泛应用。  相似文献   

4.
Polydimethylsiloxane‐block‐polystyrene‐block‐polydimethylsiloxane (PDMS‐b‐PS‐b‐PDMS) was synthesized by the radical polymerization of styrene using a polydimethylsiloxane‐based macroazoinitiator (PDMS MAI) in supercritical CO2. PDMS MAI was synthesized by reacting hydroxy‐terminated PDMS and 4,4′‐azobis(4‐cyanopentanoyl chloride) (ACPC) having a thermodegradable azo‐linkage at room temperature. The polymerization of styrene initiated by PDMS MAI was investigated in a batch system using supercritical CO2 as the reaction medium. PDMS MAI was found to behave as a polyazoinitiator for radical block copolymerization of styrene, but not as a surfactant. The response surface methodology was used to design the experiments. The parameters used were pressure, temperature, PDMS MAI concentration and reaction time. These parameters were investigated at three levels (?1, 0 and 1). The dependent variable was taken as the polymerization yield of styrene. PDMS MAI and PDMS‐b‐PS‐b‐PDMS copolymers obtained were characterized by proton nuclear magnetic resonance and infrared spectroscopy. The number‐ and weight‐average molecular weights of block copolymers were determined by gel permeation chromatography. Copyright © 2004 Society of Chemical Industry  相似文献   

5.
The adhesive properties, as measured by bulk tack and peel strength analysis, were found to decrease in polystyrene‐block‐polybutadiene‐block‐polystyrene (SBS) and polystyrene‐block‐polyisoprene‐block‐polystyrene (SIS) PSA films containing common singlet oxygen generators, acridine, rose bengal, and C60 fullerene, when irradiated with a tungsten halogen light in air. The addition of the singlet oxygen quencher, β‐carotene, to the C60 fullerene samples was found to significantly deter the rate of adhesive loss in the fullerene‐SBS and ‐SIS PSA nanocomposites. The presence of oxygen was essential to the mechanism of adhesive loss and, in combination with the effects of singlet oxygen generators and a singlet oxygen scavenger, strongly supports a singlet‐oxygen mediated process. FTIR investigations of fullerene‐SBS and ‐SIS systems suggest the initial formation of peroxides which, upon further irradiation, lead to the generation of carbonyl‐containing compounds of a ketonic type after crosslinking. Rates of SBS and SIS C‐H abstraction were comparable and found to decrease when the high‐pressure, mercury xenon irradiation source was filtered to allow only light of λ > 390 nm. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
Specially designed block copolymers have played a role as compatibilizing agents in the system of immiscible polymer blends. We applied lauryl lactam (LA)–caprolactone (CL) block copolymer [P(LA‐b‐CL)] as a compatibilizing agent for immiscible poly(vinyl chloride) (PVC) blends with various polymers. These blends possess high thermal performance and toughness. We investigated the effect of P(LA‐b‐CL) as a compatibilizing agent for immiscible PVC blends with poly(ω‐lauryl lactam) [polyamide 12 (PA12)]. We also described the invention of a new compatibilizing agent system involving P(LA‐b‐CL) for PVC/polypropylene (PP) blends. The mechanical and thermal properties of (1) PVC/PA12 blend compatibilized with P(LA‐b‐CL) and (2) PVC/PP blend compatibilized with P(LA‐b‐CL)/PA12/maleic anhydride–modified PP were both enhanced. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1983‐1992, 2004  相似文献   

7.
Aspects of the molecular weight and its distribution, the branching of low‐density polyethylene (LDPE), and the molecular composition of the ethylene–propylene–diene rubber (EPDM) matrix are presented in this article in terms of their influence on the surface segregation of polyethylene (PE) in elastomer/plastomer blends. All of the PEs studied, despite different weight‐average molecular weights and degrees of branching, segregated to the surface of the LDPE/EPDM blends. Atomic force microscopy pictures demonstrated defective crystalline structures on the surface of the blends, which together with a decrease in the degrees of their bulk crystallinity and a simultaneous increase in their melting temperatures, pointed to a low molecular weight and a defective fraction of PE taking part in the surface segregation. The extent of segregation depended on the molecular structure of the EPDM matrix, which determined the miscibility of the components on a segmental level. The higher the ethylene monomer content in EPDM was, the lower was the PE content in the surface layer of the blends. The composition and structure of the surface layer was responsible for its lower hardness in comparison with the bulk of the blends studied. The surface gradient of the mechanical properties depended on the physicochemical characteristics of the components and the blend composition, which created the possibility of tailoring the LDPE/EPDM blends to dedicated applications. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 625–633, 2006  相似文献   

8.
BACKGROUND: This paper reports an investigation of the microphase‐separated morphology and phase behaviour in blends of d‐polystyrene‐block‐polyisoprene with homopolystyrene in the weak segregation regime, using small‐angle X‐ray scattering and transmission electron microscopy, as a function of composition, weight‐average molecular weight and temperature. The chain length ratio parameter rM = MH/MC (where MH and MC are the weight‐average molecular weights of the homopolymer and corresponding block copolymer chain) was selected to encompass all possible types of mutual homopolymer/block copolymer sizes. RESULTS: In the weak segregation regime the polystyrene block chains behave as a ‘wet brush’ for rM < 1 similarly to the intermediate and strong segregation regimes. For rM > 1 a macroscopic phase separation occurs. The domain spacing D increases systematically in the range 0 < rM ≤ 1 with increasing concentration of homopolymer wP and increasing rM regardless of the implemented specific morphology, but the slope of the periodicity D versus wP relation is smaller than in the intermediate and strong segregation regimes. CONCLUSION: The criterion for ‘wet and dry brush’ morphologies has been applied to explain the changes in microdomain morphology during the self‐assembly process. It has been shown that the parameters rM and χ3/2N (where χ is the Flory–Huggins parameter and N the number of segments per chain) characterize the slope of the D versus wP relation in the weak and intermediate segregation regimes. Copyright © 2009 Society of Chemical Industry  相似文献   

9.
The phase behavior of poly(resorcinol phthalate‐block‐carbonate) (RPC) with engineering polyesters was investigated by using differential scanning calorimeter (DSC) and dynamic mechanical analysis. RPC was found to form miscible blends with poly(ethylene terephthalate) (PET), poly(butylene terephthalate) (PBT), and poly(cyclohexylmethylene terephthalate) (PCT), but was partially miscible with poly(1,4‐cyclohexanedimethylene‐1,4‐cyclohexanedicarboxylate) (PCCD) in the melt state and below the melting temperature (Tm). The degree of melting‐point depression indicates that the RPC is most miscible with PCT followed by PET and then PBT. Furthermore, with the help of empirical DSC data and the Nishi–Wang equation, the interaction parameters between RPC and PET, PBT, and PCT were quantified to be ?0.36, ?0.33, and ?0.54, respectively. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
The surface composition of polystyrene blends containing poly(dimethylsiloxane)-polystyrene block copolymers have been analyzed using X-ray photoelectron spectroscopy (XPS), contact angle measurements, and time-of-flight secondary ion mass spectrometry (TOFSIMS). The three techniques showed the surface of the blend samples to be identical to pure poly(dimethylsiloxane) homopolymer, despite the fact that the systems each contained only a 2% bulk concentration of siloxane. The high surface sensitivity of TOFSIMS—which probes the samples to depths of a few angstroms—indicates an enrichment of-Si(CH3)3 groups at the surface. These are the terminal groups of the PDMS part of the block. Their enrichment at the surface of the samples is presumably due to their low surface energy, in addition to the tendency for end groups to be at the surface due to free volume considerations.Presented at the XXVIth Silicon Symposium, Indiana University-Purdue University at Indianapolis, March 26–27, 1993.  相似文献   

11.
A polysiloxane diglycidyl ether was used as a comonomer of epoxy resins to obtain coatings through the ultraviolet curing technique. Notwithstanding its very low concentration (<1 wt %), the siloxane monomer caused a change in the surface properties of the films. Selective surface stratification was evidenced by X‐ray photoelectron spectroscopy analysis, and an interesting surface modification was achieved without changing the bulk properties of the films or the rate of polymerization. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 584–589, 2004  相似文献   

12.
Block‐copolymers containing poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) and polycarbonate of bisphenol A (PC) segments were employed as compatibilizers in polystyrene (PS)/PC blends. Block‐copolymers were prepared starting from oligomeric diols‐terminated PPO and PC. The poly(phenylene ethers) was obtained by oxidative coupling of 2,6‐dimethyl‐phenol in presence of tetramethyl bisphenol A. The copolymers were obtained with a chain extension reaction between the starting oligomers using bischloroformate of bisphenol A or phosgene as coupling agent. PS/PC blends, cast from chloroform solutions or mixed by melt, were studied by differential scanning calorimeter (DSC), dynamic‐mechanical thermal analysis (DMTA), and optical microscopy (OP). The thermal and morphological analyses showed a clear compatibilization effect between PS and PC, if PPO–PC copolymer is added when blending is performed in the melt; in addition, also mechanical properties are increased when compared with blends without PPO–PC. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4654–4660, 2006  相似文献   

13.
The toughness behavior of PPO–SAN blends with the modifier poly(styrene‐block‐butadiene) (SBSB) and with poly(styrene‐block‐butadiene‐block‐methyl methacrylate) copolymers (SBM) under impact loading conditions has been investigated. The observed morphology of blends compatibilized with SBM, in which the rubber phase discontinuously accumulated at the PPO–SAN interface, correlated with about 20 times higher energy dissipation up to maximum force and about seven times higher deformation capacity compared to pure PPO–SAN blends. In contrast, the fracture behavior of the SBSB‐modified blends was not as strongly dependent on the rubber content. It is especially noteworthy that although the SBM modification resulted in a strong increase in toughness of the PPO–SAN blends, no decrease in stiffness could be found with up to 15% rubber additions. The values of Young's moduli remained at the same high level of the nonmodified material. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2037–2045, 2000  相似文献   

14.
The copper diffusion barrier properties of layered silicate/fluorinated polyimide nanocomposites were analyzed by transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS). It was found that the particles of copper are effectively retarded from penetrating into the polyimide matrix by layered silicates. The diffusion coefficients of layered silicate/polyimide nanocomposites are lower than that of the pure polyimide. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1422–1425, 2004  相似文献   

15.
Nanocomposites based on organically modified montmorillonites (OMMTs) and sodium montmorillonite (CLO‐Na+) with poly(styrene‐b‐butadiene‐b‐styrene) (SBS) diblock copolymer have been investigated. Solution blending of OMMT suspension in toluene with SBS and subsequent static casting and annealing resulted in transparent films. Final samples were processed by compression molding. The intercalation spacing in the nanocomposites, microphase separation of the SBS, and the degree of dispersion of nanocomposites were investigated by X‐ray diffraction (Wide and small‐angle X‐ray scattering), transmission optical microscopy (TOM), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The increase of basal spacing of OMMT in the nanocomposites suggested the intercalation of SBS. The lamellar structure perfection was extensively affected by both OMMT. AFM images and TOM micrographs only showed well dispersed but not exfoliated nanocomposites. On the other hand, TEM showed inserted tactoids into both blocks depending on the surfactant used (stained samples) and the dispersion of those tactoids (unstained samples). Fourier transform infrared spectroscopy indicated only the presence of the OMMT into the SBS. Deviations of the decomposition pathway of pristine SBS with addition of the OMMT were found by thermogravimetric analysis. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
Two binary polyimide (PI) blends having a common monomer, diamine and dianhydride, were prepared. The first system was composed of PIs obtained from an alicyclic and flexible dianhydride, namely 5‐(2,5‐dioxotetrahydrofurfuryl)‐3‐methyl‐3‐cyclohexene‐1,2‐dicarboxylic acid anhydride (DOCDA) and two aromatic diamines, 4,4′‐oxydianiline (ODA) and p‐phenylenediamine (PPD), respectively. In the second system, ODA was combined with DOCDA and (hexafluoroisopropyldiene)diphtalic dianhydride (6FDA). Incorporation of aliphatic and asymmetric DOCDA moieties, hexafluoropropyldiene groups and ether linkages in the molecular structure of PI blends, poly(DOCDA/PPD)/poly(DOCDA‐ODA) and poly(6FDA‐ODA)/poly(DOCDA‐ODA) influenced the surface tension parameters, surface and interfacial free energy, and the work of spreading of water, maintaining the surface hydrophobic characteristics of both systems. In addition, it has been found out that surface hydrophobicity and surface roughness are properties that can be correlated with the red blood cells and platelets compatibility. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

17.
An approach to achieve confined crystallization of ferroelectric semicrystalline poly(vinylidene fluoride) (PVDF) was investigated. A novel polydimethylsiloxane‐block‐poly(methyl methacrylate)‐block‐polystyrene (PDMS‐b‐PMMA‐b‐PS) triblock copolymer was synthesized by the atom‐transfer radical polymerization method and blended with PVDF. Miscibility, crystallization and morphology of the PVDF/PDMS‐b‐PMMA‐b‐PS blends were studied within the whole range of concentration. In this A‐b‐B‐b‐C/D type of triblock copolymer/homopolymer system, crystallizable PVDF (D) and PMMA (B) middle block are miscible because of specific intermolecular interactions while A block (PDMS) and C block (PS) are immiscible with PVDF. Nanostructured morphology is formed via self‐assembly, displaying a variety of phase structures and semicrystalline morphologies. Crystallization at 145 °C reveals that both α and β crystalline phases of PVDF are present in PVDF/PDMS‐b‐PMMA‐b‐PS blends. Incorporation of the triblock copolymer decreases the degree of crystallization and enhances the proportion of β to α phase of semicrystalline PVDF. Introduction of PDMS‐b‐PMMA‐b‐PS triblock copolymer to PVDF makes the crystalline structures compact and confines the crystal size. Moreover, small‐angle X‐ray scattering results indicate that the immiscible PDMS as a soft block and PS as a hard block are localized in PVDF crystalline structures. © 2019 Society of Chemical Industry  相似文献   

18.
Blend systems of polystyrene‐block‐poly(ethylene‐co‐(ethylene‐propylene))‐block‐polystyrene (SEEPS) triblock copolymer with three types of hydrocarbon oil of different molecular weight were prepared. The E″ curves as a function of temperature exhibited two peaks; one peak at low temperature (? ?50°C), arising from the glass transition of the poly[ethylene‐co‐(ethylene‐propylene)] (PEEP) phase and a high temperature peak (? 100°C), arising from the glass transition of the polystyrene (PS) phase. The glass transition temperature (Tg) of the PEEP phase shifted to lower temperature with increasing oil content. The shifted Tg depended on the types of oil and was lower for the low molecular weight oil. The Tg of PS phase of the present blend system, were found to be constant and independent of the oil content, when molecular weight of the oil is high. However, for the lower molecular weight oil, the Tg of the PS phase also shifted to lower temperatures. This fact indicates that the oil of high molecular weight is merely dissolved in the PS phase. The E′ at (75°C, at which temperature both of PEEP and PS phases are in glassy state, was found to be independent of oil content. In contrast, at 25°C, at which temperature the PEEP phase is in rubbery state, the E′ decreased sharply with increasing oil content. This result indicates that the hydrocarbon oil was a selective solvent in the PEEP phase. It mainly dissolved in the PEEP phase, although slightly dissolved into the PS phase as well, when molecular weight of oil is low. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
Polarized Fourier transform infrared (FTIR) and ultraviolet‐visible (UV‐VIS) spectroscopy were used to investigate the photodegradation direction of polarized UV (PUV)‐irradiated polyimide (PI) films based on pyromellitic dianhydride (PMDA) and 4,4′‐oxydianiline (ODA). PI films strongly absorb below 350 nm, resulting in a photochemical reaction of the PI. PUV irradiation of the PI film caused a decrease of all existing peaks and formation of new peaks at 3258, 1748, and 1710 cm?1 in the IR, due to degradation of the PI molecules. The preferential degradation of PI molecules parallel to the PUV irradiation direction results in the predominant orientation of the remaining PI molecules perpendicular to the PUV irradiation direction. But rubbing of the PI films induced orientation of the PI molecules parallel to the rubbing direction. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3072–3077, 2002  相似文献   

20.
A series of random copolyamic acid were synthesized from various ratios of two diamines 4, 4′‐oxydianiline (ODA) and 2‐(4‐aminophenyl)‐5‐aminobenzimidazole (PABZ) by polycondensation with pyromellitic dianhydride (PMDA) in N‐methyl‐2‐pyrrolidone (NMP). Their inherent viscosities were in the range of 1.89–2.91 dl/g. The polyamic acid (PAA) solution drops were spun into fibers by the wet spinning process. The polyimide (PI) fibers were obtained from PAA fibers after drawn and treated in heating tube. The fibers were characterized by fourier transform infrared (FTIR), wide X‐ray diffraction (WAXD), scanning electron microscope (SEM), thermal gravimetry analysis (TGA), dynamic mechanical analysis (DMA), and tensile testing. WAXD showed these PI fibers were basically amorphous. The tensile strength and initial modulus of the PI fiber reached 1.53 and 220.5 GPa when diamine ratio of PABZ/ODA was 7/3, which were almost three times and 30 times over that of the PMDA/ODA PI fibers. TGA showed that the PI fibers were thermally stable with 10% weight losses recorded in the range of 492–564°C under nitrogen atmosphere, and their glass transition temperature (Tg) were found to be 410–440°C by DMA with increasing PABZ content from 30 to 70%. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号