首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
In the presence of glycerol and formamide, one‐step extrusion processing was used to prepare poly(lactic acid) (PLA)/thermoplastic dry starch (DTPS) blends (50/50 wt%) in a single‐screw extruder. The rheological study proved that formamide could improve the fluidity of DTPS and DTPS/PLA blends. With increasing the fluidity of DTPS, a highly dispersed and compatible DTPS/PLA could be achieved by scanning electron microscope (SEM). It was also certain that the plasticization of DTPS was improved. At the same time, Fourier transform infrared (FT‐IR) spectroscopy proved that formamide not only weakened the interaction of starch molecules, but also improved the interaction between DTPS and PLA. So that the blend could achieve more thermal stability in a compatible blend, as shown in TGA. The improvement of compatible in DTPS/PLA blends was also proved by tensile test and Dynamic mechanical thermal analysis (DMTA) in this article. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

2.
Poly(lactic acid)/poly(ethylene‐co‐vinyl acetate)/starch (PLA/EVA/starch) ternary blends were prepared by multi‐step melt processing (reactive extrusion) in the presence of maleic anhydride (MA), benzoyl peroxide and glycerol. The effects of MA and glycerol concentration on the morphology and properties of the PLA/EVA/starch blends were studied using scanning electron microscopy, transmission electron microscopy, atomic force microscopy, the Molau experiment, dynamic mechanical thermal analysis and differential scanning calorimetry etc. The plasticization and compatibilization provided a synergistic effect to these blends accompanied by a significant reduction in starch particle size and an increase in interfacial adhesion. Starch was finely dispersed in the ternary blends with a dimension of 0.5 ? 2 µm. Furthermore, EVA‐coated starch or a starch‐in‐EVA type of morphology was observed for the reactively compatibilized PLA/EVA/starch blends. The EVA with starch gradually changed into a co‐continuous phase with increasing MA concentration. Consequently, the toughness of the blends was improved. Since property stability of starch is an issue, the tensile properties of these blends were measured after different storage times and the blends showed good property stability. Copyright © 2012 Society of Chemical Industry  相似文献   

3.
Three different kinds of modified starch (MS) were prepared as fillers to assess the compatibility between them and poly(lactic acid) (PLA) resin. The blends were prepared by incorporating 15 wt% of the MS into PLA using a twin‐screw extruder. Through morphology analysis, it can be seen that the dispersion state of MS granules was greatly different. Investigations of thermal behavior indicated that the addition of MS decreased thermal properties which found expression in the decrease of melting temperature and vicat softening temperature (VST). But thermal stability of PLA/maleic anhydride grafted starch (MA‐g‐ST) was slightly higher than those of other blends. PLA/MA‐g‐ST blend exhibited the highest notched impact strength, elongation at break, and tensile strength, which means MA‐g‐ST was suitable as a filler improving the toughness of PLA. It was also proved that biodegradability rate of blends increased dramatically and reached up to 1.80, 1.89, 1.44 g day−1 after 60 days, respectively. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

4.
This research work has concerned a study on relationship between structure and properties of maleated thermoplastic starch (MTPS)/plasticized poly(lactic acid) (PLA) blend. The aim of this work is to investigate the effects of blending time, temperature, and blend ratio on mechanical, rheological, and thermal properties of the blend. The MTPS was prepared by mixing the cassava starch with glycerol and maleic anhydride (MA). Chemical structure of the modified starch was characterized by using a FTIR technique, whereas the degree of substitution was determined by using a titration technique. After that, the MTPS prepared by 2.5 pph of MA was further used for blending with triacetin‐plasticized PLA under various conditions. Mechanical, thermal, and rheological properties of the blends were evaluated by using a tensile test, dynamic mechanical thermal analysis, and melt flow index (MFI) test, respectively. It was found that tensile strength and modulus of the MTPS/PLA blend increased with the starch content, blending temperature, and time, at the expense of their toughness and elongation values. The MFI values also increased with the above factors, suggesting some chain scission of the polymers during blending. SEM images of the various blends, however, revealed that the blend became more homogeneous if the temperature was increased. The above effect was discussed in the light of trans‐esterification. Last, it was found that mechanical properties of the PLA/MTPS blend were more superior to those of the normal PLA/TPS blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
Bio‐degradable polymer blends of polylactic acid/thermoplastic starch (PLA/TPS) were prepared via direct melt blending varying order of mixing of ingredients fed into the extruder. The effect of interface interactions between PLA and TPS in the presence of maleic anhydride (MA) compatibilizer on the microstructure and mechanical properties was then investigated. The prepared PLA/TPS blends were characterized by scanning electron microscopy, differential scanning calorimetry (DSC), tensile, and rheological measurements. Morphology of PLA/TPS shows that the introduction of MA into the polymer matrix increases the presence of TPS at the interface region. DSC results revealed the reduction of glass transition temperature of PLA with contributions from both TPS and MA. The crystallization temperature was decreased by the addition of MA leading to reduction of overall crystallization of PLA/TPS blend. The mechanical measurements show that increasing MA content up to 2 wt % enhances the modulus of PLA/TPS more than 45% compared to the corresponding blends free of MA compatibilizer. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44734.  相似文献   

6.
马来酸酐对热塑性淀粉/聚乙烯相容性的影响   总被引:2,自引:1,他引:2  
王书军  于九皋 《中国塑料》2003,17(10):27-31
研究了在引发剂作用下,马来酸酐作为热塑性淀粉(TPS)/聚乙烯共混体系的增容剂,采用淀粉的热塑化与提高聚乙烯的相容性在单螺杆挤出机里同时完成的工艺。实验结果表明,在引发剂作用下,马来酸酐的加入提高了共混物中淀粉颗粒在聚乙烯中的分散性及共混体系的力学性能以及热稳定性,流变性能分析表明共混体系具有可加工性能。  相似文献   

7.
Rheological and morphological properties of melt processed poly(ethylene terephthalate) (PET)/polypropylene (PP) blends are presented. Two types of compatibilizer namely, PP‐g‐MA <MA= maleic anhydtide> and Elvaloy PTW, an n‐butyl acrylate glycidyl methacrylate ethylene terpolymers, were incorporated at different levels to the PET/PP blend system. Scanning electron microscopy revealed that the dispersed particle sizes were smaller in PET‐rich blends than PP‐rich blends. With increasing compatibilizer level, the refinement of morphology was observed in both the systems. However, the blends compatibilized with PTW showed a more refined (smaller) particle size, and at high PTW content (10 wt%), the morphology changed towards monophasic. The significant changes in morphology were attributed to the highly reactive nature of PTW. Investigation of rheological properties revealed that the viscosity of the PET/PP blends followed typical trends based on mixing rule, which calculates the properties of blends based on a linear average. Incorporation of PP‐g‐MA into the blends resulted in a negative deviation in the viscosity of the system with respect to that of the neat blend. With increasing PP‐g‐MA level, the deviation became more pronounced. Although incorporation of the compatibilizer into the PET/PP blends refined the morphology, it led to a drastic drop of viscosity, which could be attributed to inherently lower molecular weight of the compatibilizer. In the case of the blends compatibilized by PTW, a strong positive deviation in rheological properties was observed that confirmed the stronger interaction between the blend components due to reactive compatibilization process, which led to the more refined morphology in this series of blends. J. VINYL ADDIT. TECHNOL., 19:25–30, 2013. © 2013 Society of Plastics Engineers  相似文献   

8.
Both uncompatibilized and compatibilized blends based on polyamide 12 (PA12) and isotactic polypropylene (PP) were prepared in a Brabender Plastograph®. The compatibiliser used was maleic anhydride functionalized polypropylene (PP‐g‐MA). Phase morphology of the blends was inspected in scanning electron microscope (SEM) on cryogenically fractured etched surfaces of the specimens. PA12/PP blends possessed a nonuniform and unstable morphology owing to the incompatibility between their constituents. Addition of compatibiliser improved the interfacial characteristics of the blends by retarding the rate of coalescence. So, the phase morphology became more fine, uniform, and stable. Tensile properties of both uncompatibilized and compatibilized blends were measured as a function of blend composition and compatibiliser concentration. Uncompatibilized blends displayed inferior mechanical properties to compatibilized ones; especially for those containing 40–60 wt % of PP. Reactive compatibilisation of blends was found to be efficient and improved the tensile strength of the blends considerably. Addition of PP‐g‐MA improved the interfacial adhesion, decreased the interfacial tension, and thereby, enhanced the tensile strength by 85%. Finally, various models were adopted to describe the tensile strength of the blends. The experimental data exhibited a reasonably good fit with Nielsen's first power law model. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

9.
Thermoplasticized starch (TPS) filled poly(lactic acid) (PLA) blends are usually found to have low mechanical properties due to poor properties of TPS and inadequate adhesion between the TPS and PLA. The purpose of this study was to investigate the reinforcing effect of wood fibers (WF) on the mechanical properties of TPS/PLA blends. In order to improve the compatibility of wood with TPS/PLA blends, maleic anhydride grafted PLA (MA‐g‐PLA) copolymer was synthesized and used. TPS, TPS/PLA blends, and WF reinforced TPS/PLA composites were prepared by twin‐screw extrusion and injection molded. Scanning electron microscope and crystallinity studies indicated thermoplasticity in starch. WF at two different weight proportions, that is, 20% and 40% with respect to TPS content were taken and MA‐g‐PLA at 10% to the total weight was chosen to study the effect on mechanical properties. At 20% WF and 10% MA‐g‐PLA, the tensile strength exhibited 86% improvement and flexural strength exhibited about 106% improvement over TPS/PLA blends. Increasing WF content to 40% further enhanced tensile strength by 128% and flexural strength by 180% with respect to TPS/PLA blends. Thermal behavior of blends and composites was analyzed using dynamic mechanical analysis and thermogravimetric analysis. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46118.  相似文献   

10.
MA is grafted onto both PLLA and starch in an internal mixer in the presence of DCP in a one‐step reactive compatibilization process. The effect of maleation of MA on the physical and mechanical properties and morphology of the blends was assessed. The onset decomposition temperature of the PLLA/starch blends decreased as the starch content increases due to the lower thermal stability of starch and the low effect of the maleation reaction on the thermal stability of the blends. PLLA/starch blends without grafted MA showed higher crystallinity as the starch content increased. Reactive compatibilized blends with less than 20 wt% starch had higher storage modulus, indicating that the compatibility between the two phases was improved.

  相似文献   


11.
The poly(ε‐caprolactone) (PCL)/starch blends were prepared with a coextruder by using the starch grafted PLLA copolymer (St‐g‐PLLA) as compatibilizers. The thermal, mechanical, thermo‐mechanical, and morphological characterizations were performed to show the better performance of these blends compared with the virgin PCL/starch blend without the compatibilizer. Interfacial adhesion between PCL matrix and starch dispersion phases dominated by the compatibilizing effects of the St‐g‐PLLA copolymers was significantly improved. Mechanical and other physical properties were correlated with the compatibilizing effect of the St‐g‐PLLA copolymer. With the addition of starch acted as rigid filler, the Young's modulus of the PCL/starch blends with or without compatibilizer all increased, and the strength and elongation were decreased compared with pure PCL. Whereas when St‐g‐PLLA added into the blend, starch and PCL, the properties of the blends were improved markedly. The 50/50 composite of PCL/starch compatibilized by 10% St‐g‐PLLA gave a tensile strength of 16.6 MPa and Young's modulus of 996 MPa, respectively, vs. 8.0 MPa and 597 MPa, respectively, for the simple 50/50 blend of PCL/starch. At the same time, the storage modulus of compatibilized blends improved to 2940 MPa. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
Blends of compatibilized polyoxymethylene (POM)/ethylene butylacrylate copolymer (EBA)/ethylene‐methyl acrylate‐glycidyl methacrylate copolymer (EMA‐GMA) and uncompatibilized POM/EBA were investigated. The notched impact strength of the compatibilized blends was higher than that of their uncompatibilized counterparts. The toughness of the POM blends was improved obviously with relatively low loading of EBA. Fourier transform infrared spectroscopy (FTIR) spectra of EMA‐GMA, pure POM, and POM/EBA/EMA‐GMA blends indicated that epoxy groups of EMA‐GMA reacted with terminal hydroxyl groups of POM molecular chains. The glass‐transition temperature (Tg) values of the POM matrix and the EBA phase were observed shifted to each other in the presence of EMA‐GMA compatibilizer indicating that the compatibilized blends had better compatibility than their uncompatibilized counterparts. With the addition of EBA to POM, both the compatibilized and uncompatibilized blends showed higher onset degradation temperature (Td) than that of pure POM and the Td values of the compatibilized blends were higher than those of their uncompatibilized counterparts. The scanning electron microscopy showed better EBA particles distribution state in the compatibilized system than in the uncompatibilized one. The compatibilized blend with an obvious rougher impact fracture surface indicated the ductile fracture mode. POLYM. ENG. SCI., 58:1127–1134, 2018. © 2017 Society of Plastics Engineers  相似文献   

13.
增塑剂对聚乳酸/热塑性淀粉共混物结构与性能的影响   总被引:1,自引:0,他引:1  
采用柠檬酸三丁酯(TBC)、聚乙二醇(PEG)增塑聚乳酸(PLA)/热塑性淀粉(TPS)共混体系,调节PLA的流变性能,改善PLA与TPS相容性、熔融共混特性和共混物的微观结构和力学性能.结果表明:TBC的改性效果比PEG更佳;TBC能增加TPS分散均匀性,相分散尺寸明显变小;TBC改性PLA/TPS的拉伸强度和断裂伸长率明显提高.吸水率较小.  相似文献   

14.
Nanocomposites with enhanced biodegradability and reduced oxygen permeability were fabricated via melt hybridization of organomodified clay and poly (lactic acid) (PLA) as well as a PLA/polycaprolactone (PCL) blend. The nanocomposite microstructure was engineered via interfacial compatibilization with maleated polypropylene (PP‐g‐MA). Effects of the compatibilizer structural parameters and feeding route on the dispersion state of the nanolayers and their partitioning between the PLA and PCL phases were evaluated with X‐ray diffraction, transmission electron microscopy, and scanning electron microscopy. Although highly functionalized PP‐g‐MA with a low molecular weight was shown to be much more effective in the intercalation of PLA and the PLA/PCL blend into the clay gallery spaces, composite samples compatibilized by high‐molecular‐weight PP‐g‐MA with a lower degree of maleation exhibited lower oxygen permeability as well as a higher rate of biodegradation, which indicated the accelerating role of the dispersed nanolayers and their interfaces in the enzymatic degradation of PLA and PLA/PCL matrices. This evidenced a correlation between the nanocomposite structure and rate of biodegradation. The size of the PCL droplets in the PLA matrix was reduced by nanoclay incorporation, and this revealed that the nanolayers were preferentially wetted by PCL in the blend. However, PCL appeared as fine and elongated particles in the microstructure of the PLA/PCL/organoclay hybrids compatibilized by higher molecular weight and less functionalized PP‐g‐MA. All the PLA/organoclay and PLA/PCL/organoclay hybrids compatibilized with high‐molecular‐weight PP‐g‐MA displayed a higher dynamic melt viscosity with more pseudo solid‐like melt rheological responses, and this indicated the formation of a strong network structure by the dispersed clay layers. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
In situ compatibilized poly(lactic acid)/thermoplastic polyester elastomer (PLA/TPEE) (80/20) blends are prepared by using multifunctional epoxide oligomer (coded as ADR) as a reactive modifier. Experiments such as torque, melt mass flow rate (MFR), SEM, DSC and tensile test were conducted to characterize properties of the PLA/TPEE/ADR blends. In situ reactions between PLA, TPEE and ADR were researched using a lab torque rheometer. It was proposed that ADR may initiate a variety of chain extension/branching reactions between PLA and TPEE under mixing process. In particular, the formed copolymer PLA‐ADR‐TPEE could be viewed as an in situ compatibilizer to improve the compatibility of PLA and TPEE. As expected, the value of MFR decreased greatly with increasing the ADR addition. The morphology reveals that interface adhesion of PLA/TPEE blend was enhanced with the incorporation of ADR, which led to a reduction in TPEE domain size. Moreover, tensile ductility of PLA/TPEE (80/20) blend was improved greatly by addition of the reactive modifier, e.g. the elongation at break was increased from 53% to the maximum value of 213% with addition of 1.2 phr ADR. The toughening effect can be explained by crazing with shear yielding mechanism. Attempts were made to produce ductile films from these PLA/TPEE/ADR blends by using extrusion blowing method. Effect of ADR on blowing stability and tensile property of these blends was investigated. Improvement on blowing stability and tensile ductility of PLA/TPEE/ADR films also shows that ADR is an efficiently reactive compatibilizer, as well as a viscosity enhancer for PLA/TPEE blends. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43424.  相似文献   

16.
This study focuses on the compatibilization of poly(lactic acid) (PLA)/thermoplastic polyurethane (TPU) blends by using 1,4 phenylene diisocyanate (PDI) for the first time, as the compatibilizer. Because of the potential interactions of diisocyanates with ? OH/? COOH, they are useful for reactive processing of PLA/TPU blends in the melt processing. To have insight on the reactively compatibilized structure of PLA/TPU blends, phase morphologies are observed by means of scanning electron microscopy. The mechanical, thermal, and rheological responses of the blends are investigated. The observations are that the brittle behavior of PLA changes to ductile with the addition of TPUs. The addition of PDI improves the tensile properties of the blends. The compatibilization action of PDI is monitored with DMA and rheological experiments. Cross‐over in the G′ and G″ curves of compatibilized blends indicates the relaxation of branches formed in the presence of PDI. The dispersed phase size of TPU decreases in PLA in the presence of PDI due to the improved compatibility. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40251.  相似文献   

17.
Polylactic acid (PLA) was reactively functionalized with maleic anhydride (MA) and 2,5‐bis(tert‐butylperoxy)?2,5‐dimethylhexane (Luperox 101 or L101) using a twin screw extruder (TSE). The effects of functionality (grafted MA level) and/or number average molecular weight of functionalized PLA (PLA‐g‐MA) as the reactive polymer pairs (binary blends) and reactive compatibilizer (ternary blends) were investigated. Due to the dominant side reaction during melt free radical grafting, polymer degradation or chain scission, PLA‐g‐MA having a higher grafted MA had lower molecular weights and intrinsic viscosity as well as broader molecular weight distribution values. The thermal, physical, mechanical, and morphological properties of binary blends produced by using the TSE and injection molding at a ratio of 70 wt % PLA‐g‐MA and 30 wt % thermoplastic cassava starch (TPCS) were analyzed. The reactive blends having grafted MA more than 0.4 wt % had poor tensile strength and elongation at break. Similar trends in morphology and tensile properties were observed in the reactive ternary blends. The use of PLA‐g‐MA strongly impacted the elongation at break but not the modulus or tensile strength. An increase of PLA‐g‐MA's number average molecular weight ( or Mn) improved the tensile properties of the blends. The reactive ternary blend having 0.1 wt % grafted MA on PLA and PLA‐g‐MA basis and PLA‐g‐MA's Mn of 45 kDa offered the highest elongation at break. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42230.  相似文献   

18.
Rheological and morphological properties of low‐density polyethylene (LDPE) and thermoplastic starch (TPS) with low‐density polyethylene‐grafted‐maleic anhydride as a compatibilizer were investigated. The results showed that the circularity of the droplets decreased with increasing TPS content. The presence of compatibilizer led to finer morphology and higher continuity. The rheological analyses showed that TPS and compatibilizer can increase elasticity and viscosity of the blend dramatically. In addition, the compatibilizer enhanced the compatibility of the blends, as evidenced by the shifting of the relaxation time peak of TPS to longer times. The rheological properties of the neat components and their blends were discussed by the Carreau‐Yasuda and fractional Zener models. The fractional Zener model results proved the existence of network structure in the compatibilized blends. The transient properties of blends showed that TPS and compatibilized blends had strong overshoot compared with the uncompatibilized blend, owing to the formation of high elastic network in their structure. J. VINYL ADDIT. TECHNOL., 20:250–259, 2014. © 2014 Society of Plastics Engineers  相似文献   

19.
Poly(lactic acid) (PLA)/starch blends were prepared blending with dioctyl maleate (DOM). DOM acted as a compatibilizer at low concentrations (below 5%), and markedly improved tensile strength of the blend. However, DOM functioned as a plasticizer at concentrations over 5%, significantly enhancing elongation. Compatibilization and plasticization took place simultaneously according to the analysis of, for example, mechanical properties and thermal behavior. With DOM as a polymeric plasticizer, thermal loss in the blends was not significant. Water absorption of PLA/starch blends increased with DOM concentration. DOM leaching in an aqueous environment was inhibited. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1697–1704, 2004  相似文献   

20.
The compatibilization of syndiotactic polystyrene (sPS)/polyamide 6 (PA‐6) blends with maleic anhydride grafted syndiotactic polystyrene (sPS‐g‐MA) as a reactive compatibilizer was investigated. The sPS/PA‐6 blends were in situ compatibilized by a reaction between the maleic anhydride (MA) of sPS‐g‐MA and the amine end group of PA‐6. The occurrence of the chemical reaction was substantiated by the disappearance of a characteristic MA peak from the Fourier transform infrared spectrum. Morphology observations showed that the size of the dispersed PA‐6 domains was significantly reduced and that the interfacial adhesion was much improved by the addition of sPS‐g‐MA. As a result of reactive compatibilization, the impact strengths of the sPS/PA‐6 blends increased with an increase in the sPS‐g‐MA content. The crystallization behaviors of the blends were affected by the compatibilization effect of sPS‐g‐MA. A single melting peak of sPS in the noncompatibilized blend was gradually split into two peaks as the amount of the compatibilizer increased. A single crystallization peak of PA‐6 in the noncompatibilized blend became two peaks with the addition of 3 wt % sPS‐g‐MA. The new peak was a result of the fractionation crystallization. As the amount of sPS‐g‐MA increased, the intensity of the new peak increased, and the original peak nearly disappeared. Finally, the crystallization peak of PA‐6 disappeared with 20 wt % sPS‐g‐MA in the blend. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2502–2506, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号