首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Morphologies of polyethylene–ethylene/propylene/diene monomer (PE/EPDM) particles in 93/7 polypropylene (PP)/PE blends were investigated. SEM micrographs of KMnO4‐etched cut surfaces and fracture surfaces of the blends revealed the existence of the “flake” structure. In the particles, crystalline PE formations with flake shape, which remain after etching, are called flakes. In addition to the PE‐crystalline flakes, amorphous PE, located between PE crystalline lamellae and EPDM rubber, complement the flake structure. The flakes are usually linked with the PP matrix, as seen in the heptane‐treated cut surfaces. These links, although observed with compatibilized samples, originate from the crystalline nature of PE particles, if no compatibilizer is added. Separately, the morphology of Royalene (consisting of high‐density PE and EPDM rubber, used as a PP/PE compatibilizer) was investigated by low‐voltage scanning TEM. The interaction of the components in the PE/EPDM blends can explain the formation of the flakes and toughening of the PP/PE blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3087–3092, 2003  相似文献   

2.
三元乙丙橡胶/聚丙烯动态硫化热塑性弹性体的相态结构   总被引:1,自引:1,他引:1  
用扫描电镜研究了三元乙丙橡胶(EPDM)聚/丙烯(PP)动态硫化热塑性弹性体(TPV)相态结构的形成过程,探讨了交联密度、制备工艺、螺杆转速对EPDM/PP TPV相态结构的影响。结果表明,采用以酚醛树脂为硫化剂的动态硫化工艺制备的EPDM/PP TPV,其相态结构实现了由EPDM和PP组成的双连续相到以EPDM为分散相、PP为连续相的转变;当硫化剂用量为7份时,橡胶相硫化速率和交联密度最大;当螺杆转速为180 r/m in时,反应性挤出工艺较之密炼机工艺制备的EPDM/PP TPV的橡胶粒子更细小、分散更均匀。  相似文献   

3.
The effect of blend ratio on the crosslinking characteristics of ethylene vinyl acetate and ethylene propylene diene tercopolymer (EVA‐EPDM) blends was studied by differential scanning calorimetry and a torque rheometer (Rheocord‐90). The activation energy decreases with an increase in EVA content in the blend. The cure rate increases whereas the optimum cure time and energy consumption for curing decrease with an increase in the EVA/EPDM ratio. The dynamic curing obtained by the torque rheometer is very fast compared to the static curing obtained by differential scanning calorimetry. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2756–2763, 1999  相似文献   

4.
A series of ethylene propylene diene rubber/polyethylene (EPDM/PE) blends has been prepared containing different weight fractions of PE up to 0.66. The blends were vulcanized with a sulphur system N-cyclohexyl-2-benzthiazol sulphenamide/sulphur (CBS/S), and a non-sulphur-system dicumyl peroxide (DCUP). The concentration of the latter has been changed from 1.5 phr up to 6 phr calculated on the total weight of the blend composition. It has been found that the maximum torque obtained from rheographs for blends vulcanized with the CBS/S system decreases markedly with increasing PE concentration in comparison with those vulcanized with peroxide. The E modulus obtained from the stress–strain diagram at 110 °C showed the role played by the crosslinking of PE, the E modulus for blends vulcanized by peroxide being higher than for samples vulcanized with CBS/S. In contrast, the values of E modulus of both samples are practically the same at room temperature and attain more than 40 MPa depending on the composition. The tensile strength at room temperature strongly increases with increasing the weight fraction of PE. It has also been confirmed that the melting point of the crystalline phase of PE decreases with increasing crosslinking density of PE. The shear modulus obtained from dynamic mechanical measurements is in accordance with that obtained from static mechanical measurements. © 1999 Society of Chemical Industry  相似文献   

5.
In this study, ethylene/styrene interpolymer was used as a compatibilizer for the blends of polystyrene (PS) and high‐density polyethylene (HDPE). The mechanical properties including tensile and impact properties and morphology of the blends were investigated by means of uniaxial tension, instrumented falling‐weight impact measurements, and scanning electron microscopy. Tensile tests showed that the yield strength of the PS/HDPE/ESI blends decreases considerably with increasing HDPE content. However, the elongation at break of the blends tended to increase significantly with increasing HDPE content. The excellent tensile ductility of the HDPE‐rich blends resulted from shield yielding of the matrix. Izod and Charpy impact measurements indicated that the impact strength of the blends increases slowly with HDPE content up to 40 wt %; thereafter, it increases sharply with increasing HDPE content. The impact energy of the HDPE‐rich blends exceeded that of pure HDPE, implying that the HDPE polymer can be further toughened by the incorporation of brittle PS minor phase in the presence of ESI compatibilizer. The correlation between the impact property and morphology of the blends is discussed. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 4001–4007, 2007  相似文献   

6.
The mechanical properties and aging characteristics of blends of ethylene propylene diene monomer (EPDM) rubber and styrene butadiene rubber (SBR) were investigated with special reference to the effect of blend ratio and cross‐linking systems. Among the blends, the one with 80/20 EPDM/SBR has been found to exhibit the highest tensile, tear, and abrasion properties at ambient temperature. The observed changes in the mechanical properties of the blends have been correlated with the phase morphology, as attested by scanning electron micrographs (SEMs). The effects of three different cure systems, namely, sulfur (S), dicumyl peroxide (DCP), and a mixed system consisting of sulfur and peroxide (mixed) on the blend properties also were studied. The stress‐strain behavior, tensile strength, elongation at break, and tear strength of the blends were found to be better for the mixed system. The influence of fillers such as high‐abrasion furnace (HAF) black, general‐purpose furnace (GPF) black, silica, and clay on the mechanical properties of 90/10 EPDM/SBR blend was examined. The ozone and water aging studies also were conducted on the sulfur cured blends, to supplement the results from the mechanical properties investigation. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2606–2621, 2004  相似文献   

7.
In this study, vulcanized thermoplastic elastomers were produced through the formation of crosslinks with peroxide for different ratios of ethylene–propylene–diene copolymer to polypropylene. Mixing was performed with a twin‐screw extruder. Afterward, the yield, tensile strength, elastic modulus, elongation, Izod impact strength, hardness, melt flow index, Vicat softening point, heat deflection temperature, and density of the crosslinks were determined. The thermal transition temperatures and microstructure were determined with differential scanning calorimetry and scanning electron microscopy, respectively. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3895–3902, 2007  相似文献   

8.
The releasing properties of negative air ions of tourmaline contained polypropylene (PP) and ethylene propylene diene terpolymer/polypropylene (EPDM/PP) composite films under varying testing conditions were investigated in this study. It is interesting to note that the Cion− values of EPDM/PP/tourmaline specimens tested at varying conditions are significantly higher than those of the PP/tourmaline specimens with the same loadings of tourmaline powders. Moreover, all Cion− values of PP/tourmaline and EPDM/PP/tourmaline film specimens tested at dynamic impact mode are significantly higher than those of the corresponding specimens tested at static mode but the same temperature. A beneficial temperature effect on Cion− values of the PP/tourmaline and EPDM/PP/tourmaline film specimens tested at static and dynamic impact conditions was found. To understand these interesting negative air ion properties of PP/tourmaline and EPDM/PP/tourmaline film specimens, energy dispersive X-rays analysis of the tourmaline powders, scanning electron microscope morphology, and tensile property analysis of the PP/tourmaline and EPDM/PP/tourmaline film specimens were performed. Possible reasons account for the interesting negative air ion properties of the PP/tourmaline and EPDM/PP/tourmaline film specimens are discussed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
In the present study, the effect of talc content on the mechanical, thermal, and microstructural properties of the isotactic polypropylene (i‐PP) and elastomeric ethylene/propylene/diene terpolymer (EPDM) blends were investigated. In the experimental study, five different talc concentrations, 3, 6, 9, 12, and 15 wt %, were added to i‐PP/EPDM (88/12) blends to produce ternary composites. The mechanical properties such as yield and tensile strengths, elongation at break, elasticity modulus, izod impact strength for notch tip radius of 1 mm, and hardness with and without heat treatments and thermal properties, such as melt flow index (MFI), of the ternary composites have been investigated. The annealing heat treatment was carried out at 100°C for holding time of 75 h. From the tensile test results, an increased trend for the yield and tensile strengths and elasticity modulus was seen for lower talc contents, while elongation at break showed a sharp decrease with the addition of talc. In the case of MFI, talc addition decreased the MFI of i‐PP/EPDM blends. It was concluded that, taking into consideration, mechanical properties and annealing heat treatment, heat treatment has much more effect on higher yield and tensile strengths, elongation at break, elasticity modulus, impact strength, and hardness. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3033–3039, 2006  相似文献   

10.
The phase morphology and oil resistance of 20/80 NR/NBR blends filled with different types of fillers and copolymers were investigated. In the case of filler effect, N220, N330, and N660 carbon blacks with different particle sizes were used. Additionally, the blends filled with nonblack‐reinforcing fillers, that is, precipitated and silane‐treated silica, were investigated. To study the compatibilization effect, maleated ethylene propylene diene rubber (EPDM‐g‐MA) and maleated ethylene octene copolymer (EOR‐g‐MA) were added to the blends. The results revealed that the addition of filler, either carbon black or silica, to the blend caused a drastic decrease in NR dispersed phase size. Carbon blacks with different particle sizes did not produce any significant difference in NR dispersed phase size under the optical microscope. Silica‐filled blends showed lower resistance to oil than did the carbon black–filled blends. In addition, it was determined that neither EOR‐g‐MA nor EPDM‐g‐MA could act as a compatibilizer for the blend system studied. The oil resistance of the blends with EPDM‐g‐MA is strongly affected by the overall polarity of the blend. In the case of EOR‐g‐MA, the oil resistance of the blends is significantly governed by both overall polarity of the blend and phase morphology. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1156–1162, 2003  相似文献   

11.
The effect of the vulcanizing system on the mechanical properties of butyl rubber/ethylene propylene diene monomer–general purpose furnace black–(GPF) blends was studied with static and dynamic mechanical measurements for these blends. The classical theory of elasticity was applied to show the mechanical behavior of the rubber–polymer blend and to calculate the degree of crosslinking. From the dynamic mechanical measurements, the elastic modulus, internal friction, and thermal diffusivity were calculated. The observed variations were explained in view of the role played by both the vulcanizing system and the reinforcing carbon black. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1539–1544, 2003  相似文献   

12.
The ageing behavior due to the effects of heat, ozone, γ‐ radiation, and water on ethylene propylene diene monomer rubber/styrene butadiene rubber (EPDM/SBR) blends was studied. The tensile strength, crack initiation, ozone ageing, gamma radiation, and water resistance of the blends were measured and used to determine the extent of ageing. Tensile strength of blends of different compositions increased after thermal ageing for 96 h at 100°C probably due to the continued cross‐linking. It has been observed that an increase in EPDM in the blends improves the ozone resistance of the blends. Crack initiation was noted only in blends with lesser amount of EPDM and the cracks in such blends were found deeper, wider and continuous. With 15 kGy irradiation dose, the tensile strength of the blends found to be decreased while it increased with 80 kGy dosage of γ‐radiation. The elongation at break showed a decreasing trend with increased dosage of γ‐radiation. It has also been observed that the EPDM rich blends showed negligible water uptake. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
In this study, a blend of polystyrene (PS)/ethylene vinyl acetate (EVA) (PS/EVA, 90 : 10 wt %) was compatibilized with three different block copolymers, in which their end blocks were compatible with either styrene or EVA. The compatibilized blends with different compositions were prepared using a twin‐screw extruder and injection molded into the required test specimens. Mechanical properties of the blends, such as tensile properties and Charpy impact strength, morphology of tensile fractured surfaces, rheological properties, and thermal properties, were investigated. The results show that the interaction between the dispersed and continuous phase can be improved by the addition of a compatibilizer. Appreciable improvement in the impact strength of the blend with 15 wt % of compatibilizer C (polystyrene‐block‐polybutadiene) was observed. Its mechanical properties are comparable to those of the commercial high‐impact polystyrene, STYRON 470. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2071–2082, 2004  相似文献   

14.
Poly(propylene carbonate) (PPC) is a promising new sustainable polymer produced from carbon dioxide. PPC has inferior thermal stability which could be enhanced by synergistic blending with other polymers. Blends of PPC and the engineering thermoplastic polyoxymethylene are produced by melt compounding in various weight ratios. The compatibility of the blends is investigated using thermogravimetric analysis (TGA), differential scanning calorimetry, Fourier transform infrared spectroscopy (FTIR), density measurements, and scanning electron microscopy (SEM). TGA reveals that thermal stability of the blends increases dramatically in comparison to the neat PPC. A small shift in the glass transition temperature demonstrates the immiscibility of the blends but also indicates some compatibility, attributed to potential dipole–dipole interactions which are also corroborated with the FTIR results. A deviation of the rule of mixtures for density is found for some of the blends. SEM analysis of the blends shows two phase morphology; however, the interfacial adhesion appeared to be enhanced with increasing PPC content. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45823.  相似文献   

15.
动态硫化法制备三元乙丙橡胶/聚酰胺热塑性弹性体   总被引:2,自引:0,他引:2  
采用动态硫化技术制备了三元乙丙橡胶(EPDM)/聚酰胺(PA)热塑性弹性体,研究了增容剂种类及用量、硫化体系及其用量、加料顺序、PA用量对其性能的影响,用扫描电镜分析了其相态结构。结果表明,用13份(质量份,下同)的氯化聚乙烯作为增容剂时,对该共混体系的增容效果最好;硫黄硫化体系是EPDM/PA热塑性弹性体的最佳硫化剂,当硫黄用量为2份时,既保证了该热塑性弹性体中的橡胶相能充分交联,又可避免过硫化对产品性能造成的负面影响;PA用量为35份的EPDM/PA热塑性弹性体具有良好的力学性能、耐溶剂性能和耐热老化性能;EPDM以平均粒径为2~5μm的粒子形态均匀分布于PA连续相中。  相似文献   

16.
A study of the dynamic complex and steady shear viscosity of isotactic polypropylene (iPP), ethylene–propylene diene terpolymer rubber (EPDM) and three different blends of both polymers are presented over a range of temperatures and frequencies. Moreover, the processability of these materials is studied through torque measurements during blend mixing. The results obtained show that the viscosity gradually increases with rubber content in the blend and decreases with both temperature and frequency. Plots of η″ versus η′ (Cole–Cole plots) show that the blend with the lower rubber content (25%), has a certain rheological compatibility with neat PP. Furthermore, torque curves measured during blend mixing confirm these results, demonstrating that the blend with 25% of elastomer has a similar behavior of iPP during processing. To analyze the morphological structure of the blends, a dynamic mechanical analysis of the solid state is also presented. It is observed that the blends have two distinct values of Tg close to the corresponding values of the pure polymers, confirming that this type of blends based on a semicrystalline polymer and an amorphous elastomer forms a two‐phase system with a limited degree of miscibility between both components. In addition, the polymer present with the higher concentration forms the continuous phase and controls the rheological properties of the blend. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1–10, 2001  相似文献   

17.
Thermoplastic vulcanizates (TPVs) are prepared by the dynamic vulcanization process, where crosslinking of an elastomer takes place during its melt mixing with a thermoplastic polymer under high shear. TPVs based on polypropylene (PP) with different grades of ethylene‐octene copolymers (EOC) were prepared with a coagent assisted peroxide crosslinking system. The effect of dynamic vulcanization and influence of various types and concentrations of peroxide were mainly studied on the basis of the mechanical, thermal, and morphological characteristics. Three structurally different peroxides, namely dicumyl peroxide (DCP), tert‐butyl cumyl peroxide (TBCP), and di‐tert‐butyl peroxy isopropyl benzene (DTBPIB) were investigated. The mechanical properties of the TPVs are primarily determined by the extent of crosslinking in the EOC and the degree of degradation in the PP phase. Among all peroxides used DCP gives best overall properties with low‐molecular‐weight EOC, whereas TBCP shows best property level with high‐molecular‐weight EOC‐based TPVs. These can be explained on the basis of the molecular characteristics of EOC and the nature of the peroxide used. Differential scanning calorimetery (DSC) and morphological analysis reveal that PP and EOC are a thermodynamically immiscible system. The melting endotherm was studied to determine the influence of various peroxides on crystallinity of the PP phase. Tensile fracture patterns were also analyzed to study the failure mechanism of the samples. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
共混时间对动态硫化EPDM/PP体系结构与性能的影响   总被引:8,自引:2,他引:6       下载免费PDF全文
研究了共混时间对动态硫化EPDM/PP体系结构、静态以及动态力学性能的影响。试验结果表明,随着共混时间的延长,EPDM/PP体系中PP相的结晶度先减小后增大,当共混时间为15min时,PP相的结晶度最小,PP的晶格结构未变化;EPDM相的交联密度逐渐增大,直至趋于一定值;EPDM的Tg峰向高温区移动;PP的Tg峰变化不明显,其tanδ峰值在共混时间为15min时最大;共混时间为12min时EPDM/PP体系的力学性能最佳。  相似文献   

19.
A dynamically photocrosslinked polypropylene (PP)/ethylene–propylene–diene (EPDM) rubber thermoplastic elastomer was prepared by simultaneously exposing the elastomer to UV light while melt‐mixing in the presence of a photoinitiator as well as a crosslinking agent. The effects of dynamic photocrosslinking and blend composition on the mechanical properties, morphological structure, and thermal behavior of PP/EPDM blends were investigated. The results showed that after photocrosslinking, tensile strength, modulus of elasticity, and elongation at break were improved greatly. Moreover, the notched Izod impact strength was obviously enhanced compared with corresponding uncrosslinked blend. Scanning electron microscopy (SEM) morphological analysis showed that for uncrosslinked PP/EPDM blends, the cavitation of EPDM particles was the main toughening mechanism; whereas for dynamically photocrosslinked blends, shear yielding of matrix became the main energy absorption mechanism. The DSC curves showed that for each dynamically photocrosslinked PP/EPDM blend, there was a new smaller melting peak at about 152°C together with a main melting peak at about 166°C. Dynamic mechanical thermal analysis (DMTA) indicated that the compatibility between EPDM and PP was improved by dynamic photocrosslinking. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3371–3380, 2004  相似文献   

20.
动态硫化EPDM/PP共混物力学性能的研究   总被引:6,自引:1,他引:6       下载免费PDF全文
考察了硫黄用量和聚合物共混比对动态硫化EPDM/PP热塑性弹性体性能的影响。结果表明,随着硫黄用量增大,EPDM/P共混物的拉伸强度、100%定伸应力和扯断伸长率先增大后减小、硬度有所增大,随着PP用量的增大,EPDM/PP共混物的拉伸强度、100%定伸应力和硬度均有所增大,扯断伸长率也先大后减小。PP用量的变化对这些性能的影响更显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号