首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The scaled boundary finite‐element method (a novel semi‐analytical method for solving linear partial differential equations) involves the solution of a quadratic eigenproblem, the computational expense of which rises rapidly as the number of degrees of freedom increases. Consequently, it is desirable to use the minimum number of degrees of freedom necessary to achieve the accuracy desired. Stress recovery and error estimation techniques for the method have recently been developed. This paper describes an h‐hierarchical adaptive procedure for the scaled boundary finite‐element method. To allow full advantage to be taken of the ability of the scaled boundary finite‐element method to model stress singularities at the scaling centre, and to avoid discretization of certain adjacent segments of the boundary, a sub‐structuring technique is used. The effectiveness of the procedure is demonstrated through a set of examples. The procedure is compared with a similar h‐hierarchical finite element procedure. Since the error estimators in both cases evaluate the energy norm of the stress error, the computational cost of solutions of similar overall accuracy can be compared directly. The examples include the first reported direct comparison of the computational efficiency of the scaled boundary finite‐element method and the finite element method. The scaled boundary finite‐element method is found to reduce the computational effort considerably. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
A method of reducing the number of degrees of freedom and the overall computing times in finite element method (FEM) has been devised. The technique is valid for linear problems and arbitrary temporal variation of boundary conditions. At the first stage of the method standard FEM time stepping procedure is invoked. The temperature fields obtained for the first few time steps undergo statistical analysis yielding an optimal set of globally defined trial and weighting functions for the Galerkin solution of the problem at hand. Simple matrix manipulations applied to the original FEM system produce a set of ordinary differential equations of a dimensionality greatly reduced when compared with the original FEM formulation. Using the concept of modal analysis the set is then solved analytically. Treatment of non‐homogeneous initial conditions, time‐dependent boundary conditions and controlling the error introduced by the reduction of the degrees of freedom are discussed. Several numerical examples are included for validation of the approach. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
The scaled boundary finite element method, alias the consistent infinitesimal finite element cell method, is developed starting from the diffusion equation. Only the boundary of the medium is discretized with surface finite elements yielding a reduction of the spatial dimension by one. No fundamental solution is necessary, and thus no singular integrals need to be evaluated. Essential and natural boundary conditions on surfaces and conditions on interfaces between different materials are enforced exactly without any discretization. The solution of the function in the radial direction is analytical. This method is thus exact in the radial direction and converges to the exact solution in the finite element sense in the circumferential directions. The semi‐analytical solution inside the domain leads to an efficient procedure to calculate singularities accurately without discretization in the vicinity of the singular point. For a bounded medium symmetric steady‐state stiffness and mass matrices with respect to the degrees of freedom on the boundary result without any additional assumption. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
A boundary condition satisfying the radiation condition at infinity is frequently required in the numerical simulation of wave propagation in an unbounded domain. In a frequency domain analysis using finite elements, this boundary condition can be represented by the dynamic stiffness matrix of the unbounded domain defined on its boundary. A method for determining a Padé series of the dynamic stiffness matrix is proposed in this paper. This method starts from the scaled boundary finite‐element equation, which is a system of ordinary differential equations obtained by discretizing the boundary only. The coefficients of the Padé series are obtained directly from the ordinary differential equations, which are not actually solved for the dynamic stiffness matrix. The high rate of convergence of the Padé series with increasing order is demonstrated numerically. This technique is applicable to scalar waves and elastic vector waves propagating in anisotropic unbounded domains of irregular geometry. It can be combined seamlessly with standard finite elements. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
The scaled boundary finite‐element method is a novel semi‐analytical technique, combining the advantages of the finite element and the boundary element methods with unique properties of its own. This paper develops a stress recovery procedure based on a modal interpretation of the scaled boundary finite‐element method solution process, using the superconvergent patch recovery technique. The recovered stresses are superconvergent, and are used to calculate a recovery‐type error estimator. A key feature of the procedure is the compatibility of the error estimator with the standard recovery‐type finite element estimator, allowing the scaled boundary finite‐element method to be compared directly with the finite element method for the first time. A plane strain problem for which an exact solution is available is presented, both to establish the accuracy of the proposed procedures, and to demonstrate the effectiveness of the scaled boundary finite‐element method. The scaled boundary finite‐element estimator is shown to predict the true error more closely than the equivalent finite element error estimator. Unlike their finite element counterparts, the stress recovery and error estimation techniques work well with unbounded domains and stress singularities. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
A comprehensive finite element method for three‐dimensional simulations of stationary and transient electrochemical systems including all multi‐ion transport mechanisms (convection, diffusion and migration) is presented. In addition, non‐linear phenomenological electrode kinetics boundary conditions are accounted for. The governing equations form a set of coupled non‐linear partial differential equations subject to an algebraic constraint due to the electroneutrality condition. The advantage of a convective formulation of the ion‐transport equations with respect to a natural application of homogeneous flux boundary conditions is emphasized. For one of the numerical examples, an analytical solution for the coupled problem is provided, and it is demonstrated that the proposed computational approach is robust and provides accurate results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Temperature variations in the hot roll during a hot rolling process were analysed by solving heat conduction equations for boundary conditions using an analytical method. The analysis was conducted in a steady‐state regime, taking into account the effects of process parameters such as the contact surface, roll velocity and various cooling boundary conditions. Assuming the periodicity of the process, the development of a solution in the Fourier series was employed to solve the governing equations. The temperature and its gradient distributions in the roll depth were analytically expressed according to the process parameters. The accuracy of the predicted results was examined through comparison with predictions presented in the literature (finite element solutions and measurements). Results showed that an increase in the rolling speed leads to a shorter contact time, which decreases the temperature field in the work‐roll.  相似文献   

8.
Based on the differential quadrature (DQ) rule, the Gauss Lobatto quadrature rule and the variational principle, a DQ finite element method (DQFEM) is proposed for the free vibration analysis of thin plates. The DQFEM is a highly accurate and rapidly converging approach, and is distinct from the differential quadrature element method (DQEM) and the quadrature element method (QEM) by employing the function values themselves in the trial function for the title problem. The DQFEM, without using shape functions, essentially combines the high accuracy of the differential quadrature method (DQM) with the generality of the standard finite element formulation, and has superior accuracy to the standard FEM and FDM, and superior efficiency to the p‐version FEM and QEM in calculating the stiffness and mass matrices. By incorporating the reformulated DQ rules for general curvilinear quadrilaterals domains into the DQFEM, a curvilinear quadrilateral DQ finite plate element is also proposed. The inter‐element compatibility conditions as well as multiple boundary conditions can be implemented, simply and conveniently as in FEM, through modifying the nodal parameters when required at boundary grid points using the DQ rules. Thus, the DQFEM is capable of constructing curvilinear quadrilateral elements with any degree of freedom and any order of inter‐element compatibilities. A series of frequency comparisons of thin isotropic plates with irregular and regular planforms validate the performance of the DQFEM. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents a comprehensive finite‐element modelling approach to electro‐osmotic flows on unstructured meshes. The non‐linear equation governing the electric potential is solved using an iterative algorithm. The employed algorithm is based on a preconditioned GMRES scheme. The linear Laplace equation governing the external electric potential is solved using a standard pre‐conditioned conjugate gradient solver. The coupled fluid dynamics equations are solved using a fractional step‐based, fully explicit, artificial compressibility scheme. This combination of an implicit approach to the electric potential equations and an explicit discretization to the Navier–Stokes equations is one of the best ways of solving the coupled equations in a memory‐efficient manner. The local time‐stepping approach used in the solution of the fluid flow equations accelerates the solution to a steady state faster than by using a global time‐stepping approach. The fully explicit form and the fractional stages of the fluid dynamics equations make the system memory efficient and free of pressure instability. In addition to these advantages, the proposed method is suitable for use on both structured and unstructured meshes with a highly non‐uniform distribution of element sizes. The accuracy of the proposed procedure is demonstrated by solving a basic micro‐channel flow problem and comparing the results against an analytical solution. The comparisons show excellent agreement between the numerical and analytical data. In addition to the benchmark solution, we have also presented results for flow through a fully three‐dimensional rectangular channel to further demonstrate the application of the presented method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Several analysis techniques such as extended finite element method (X‐FEM) have been developed recently, which use structured grid for the analysis. Implicit boundary method uses implicit equations of the boundary to apply boundary conditions in X‐FEM framework using structured grids. Solution structures for test and trial functions are constructed using implicit equations such that the boundary conditions are satisfied even if there are no nodes on the boundary. In this paper, this method is applied for analysis using uniform B‐spline basis defined over a structured grid. Solution structures that are C1 or C2 continuous throughout the analysis domain can be constructed using B‐spline basis functions. As a structured grid does not conform to the geometry of the analysis domain, the boundaries of the analysis domain are defined independently using equations of the boundary curves/surfaces. Compared with conforming mesh, it is easier to generate structured grids that overlap the geometry and the elements in the grid are regular shaped and undistorted. Numerical examples are presented to demonstrate the performance of these B‐spline elements. The results are compared with analytical solutions as well as with traditional finite element solutions. Convergence studies for several examples show that B‐spline elements provide accurate solutions with fewer elements and nodes compared with traditional FEM. They also provide continuous stress and strain in the analysis domain, thus eliminating the need for smoothing stress/strain results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
粘弹性分数阶导数模型的有限元法   总被引:3,自引:0,他引:3  
李卓  徐秉业 《工程力学》2001,18(3):40-44
本文给出了粘弹性分数阶导数模型的有限元格式,并用模态分析的方法进行了运动方程解耦。用Laplace变换及其反变换,解析地计算了解耦后单自由度系统的时域和频域响应。时域响应被分为极点部分和截断部分,它们分别代表短期内的衰减振动和长时间内的缓慢恢复效应。以一维杆件为例,对有限元算法和解析解做了对比,分析了响应精度与单元个数的关系。结果表明用有限元法计算的位移接近解析解,而要得到准确的高频加速度响应,则需要划分许多单元格。  相似文献   

12.
A coupled finite element–boundary element analysis method for the solution of transient two‐dimensional heat conduction equations involving dissimilar materials and geometric discontinuities is developed. Along the interfaces between different material regions of the domain, temperature continuity and energy balance are enforced directly. Also, a special algorithm is implemented in the boundary element method (BEM) to treat the existence of corners of arbitrary angles along the boundary of the domain. Unknown interface fluxes are expressed in terms of unknown interface temperatures by using the boundary element method for each material region of the domain. Energy balance and temperature continuity are used for the solution of unknown interface temperatures leading to a complete set of boundary conditions in each region, thus allowing the solution of the remaining unknown boundary quantities. The concepts developed for the BEM formulation of a domain with dissimilar regions is employed in the finite element–boundary element coupling procedure. Along the common boundaries of FEM–BEM regions, fluxes from specific BEM regions are expressed in terms of common boundary (interface) temperatures, then integrated and lumped at the nodal points of the common FEM–BEM boundary so that they are treated as boundary conditions in the analysis of finite element method (FEM) regions along the common FEM–BEM boundary. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
In this work we propose a method which combines the element‐free Galerkin (EFG) with an extended partition of unity finite element method (PUFEM), that is able to enforce, in some limiting sense, the essential boundary conditions as done in the finite element method (FEM). The proposed extended PUFEM is based on the moving least square approximation (MLSA) and is capable of overcoming singularity problems, in the global shape functions, resulting from the consideration of linear and higher order base functions. With the objective of avoiding the presence of singular points, the extended PUFEM considers an extension of the support of the classical PUFE weight function. Since the extended PUFEM is closely related to the EFG method there is no need for special approximation functions with complex implementation procedures, and no use of the penalty and/or multiplier method is required in order to approximately impose the essential boundary condition. Thus, a relatively simple procedure is needed to combine both methods. In order to attest the performance of the method we consider the solution of an analytical elastic problem and also some coupled elastoplastic‐damage problems. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, a finite element (FE)/fast multipole boundary element (FMBE)‐coupling method is presented for modeling fluid–structure interaction problems numerically. Vibrating structures are assumed to consist of elastic or sound absorbing materials. An FE method (FEM) is used for this part of the solution. This structural sub‐domain is embedded in a homogeneous fluid. The case where the boundary of the structural sub‐domain has a very complex geometry is of special interest. In this case, the BE method (BEM) is a more suitable numerical tool than FEM to account for the sound propagation in the homogeneous fluid. The efficiency of the BEM is increased by using FMBEM. The BE‐surface mesh required is directly generated by the FE‐mesh used to discretize the structural sub‐domain and the absorbing material. This FE/FMBE‐coupling method makes it possible to predict the effects of arbitrarily shaped absorbing materials and vibrating structures on the sound field in the surrounding fluid numerically. The coupling method proposed is used to study the acoustic behavior of the lining of an anechoic chamber and that of an entire anechoic chamber in the low‐frequency range. The numerical results obtained are compared with the experimental data. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
 This paper presents an analytical solution, together with explicit expressions, for the steady state response of a homogeneous three-dimensional half-space subjected to a spatially sinusoidal, harmonic line load. These equations are of great importance in the formulation of three-dimensional elastodynamic problems in a half-space by means of integral transform methods and/or boundary elements. The final expressions are validated here by comparing the results with those obtained with the boundary element method (BEM) solution, for which the free surface of the ground is discretized with boundary elements.  相似文献   

16.
This study concerns the development of a coupled finite element–boundary element analysis method for the solution of thermoelastic stresses in a domain composed of dissimilar materials with geometric discontinuities. The continuity of displacement and traction components is enforced directly along the interfaces between different material regions of the domain. The presence of material and geometric discontinuities are included in the formulation explicitly. The unknown interface traction components are expressed in terms of unknown interface displacement components by using the boundary element method for each material region of the domain. Enforcing the continuity conditions leads to a final system of equations containing unknown interface displacement components only. With the solution of interface displacement components, each region has a complete set of boundary conditions, thus leading to the solution of the remaining unknown boundary quantities. The concepts developed for the BEM formulation of a domain with dissimilar regions is employed in the finite element–boundary element coupling procedure. Along the common boundaries of FEM–BEM regions, stresses from specific BEM regions are first expressed in terms of interface displacements, then integrated and lumped at the nodal points of the common FEM–BEM boundary so that they are treated as boundary conditions in the analysis of FEM regions along the common FEM–BEM boundary. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
The scaled boundary finite‐element method is extended to the modelling of thermal stresses. The particular solution for the non‐homogeneous term caused by thermal loading is expressed as integrals in the radial direction, which are evaluated analytically for temperature changes varying as power functions of the radial coordinate. When applied to model a multi‐material corner, only the boundary of the problem domain is discretized. The boundary conditions on the straight material interfaces and the side‐faces forming the corner are satisfied analytically without discretization. The stress field is expressed semi‐analytically as a series solution. The stress distribution along the radial direction, including both the real and complex power singularity and the power‐logarithmic singularity, is represented analytically. The stress intensity factors are determined directly from their definitions in stresses. No knowledge on asymptotic expansions is required. Numerical examples are calculated to evaluate the accuracy of the scaled boundary finite‐element method. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
Computation of compressible steady‐state flows using a high‐order discontinuous Galerkin finite element method is presented in this paper. An accurate representation of the boundary normals based on the definition of the geometries is used for imposing solid wall boundary conditions for curved geometries. Particular attention is given to the impact and importance of slope limiters on the solution accuracy for flows with strong discontinuities. A physics‐based shock detector is introduced to effectively make a distinction between a smooth extremum and a shock wave. A recently developed, fast, low‐storage p‐multigrid method is used for solving the governing compressible Euler equations to obtain steady‐state solutions. The method is applied to compute a variety of compressible flow problems on unstructured grids. Numerical experiments for a wide range of flow conditions in both 2D and 3D configurations are presented to demonstrate the accuracy of the developed discontinuous Galerkin method for computing compressible steady‐state flows. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
We show that the issue of a posteriori estimate the errors in the numerical simulation of non‐linear parabolic equations can be reduced to a posteriori estimate the errors in the approximation of an elliptic problem with the right‐hand side depending on known data of the problem and the computed numerical solution. A procedure to obtain local error estimates for the p version of the finite element method by solving small discrete elliptic problems with right‐hand side the residual of the p‐FEM solution is introduced. The boundary conditions are inherited by those of the space of hierarchical bases to which the error estimator belongs. We prove that the error in the numerical solution can be reduced by adding the estimators that behave as a locally defined correction to the computed approximation. When the error being estimated is that of a elliptic problem constant free local lower bounds are obtained. The local error estimation procedure is applied to non‐linear parabolic differential equations in several space dimensions. Some numerical experiments for both the elliptic and the non‐linear parabolic cases are provided. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
A super‐element for the dynamic analysis of two‐dimensional crack problems is developed based on the scaled boundary finite‐element method. The boundary of the super‐element containing a crack tip is discretized with line elements. The governing partial differential equations formulated in the scaled boundary co‐ordinates are transformed to ordinary differential equations in the frequency domain by applying the Galerkin's weighted residual technique. The displacements in the radial direction from the crack tip to a point on the boundary are solved analytically without any a priori assumption. The scaled boundary finite‐element formulation leads to symmetric static stiffness and mass matrices. The super‐element can be coupled seamlessly with standard finite elements. The transient response is evaluated directly in the time domain using a standard time‐integration scheme. The stress field, including the singularity around the crack tip, is expressed semi‐analytically. The stress intensity factors are evaluated without directly addressing singular functions, as the limit in their definitions is performed analytically. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号