共查询到20条相似文献,搜索用时 31 毫秒
1.
Current quality of service (QoS) routing schemes for low earth orbit (LEO) satellites IP networks either neglect the varying population density or fail to guarantee end-to-end delay. As a remedy, QoS routing protocol based on mobile agent (QoSRP-MA) is proposed. QoSRP-MA is a source-based routing protocol. Once connection requests arrive, QoS mobile agents are dispatched from ingress satellite to explore routes, which migrate using satellite routing tables. Upon arriving in egress satellite, QoS mobile agents migrate back towards ingress satellite to reserve bandwidth. To construct satellite routing tables, load balancing routing algorithm based on mobile agent (LBRA-MA) is presented. In LBRP-MA, at regular intervals mobile agents launched on all satellites migrate autonomously to evaluate path cost and update routing tables. Moreover, path cost between source and destination is evaluated considering satellite geographical position as well as inter-satellite link (ISL) cost. Furthermore, ISL congestion index is considered to update routing table. Through simulations on a Courier-like constellation, it shows that QoSRP-MA can achieve guaranteed end-to-end delay bound with higher throughput, lower connection failing ratio and signaling overhead compared to high performance satellite routing (HPSR) scheme. 相似文献
2.
Xianqing Yi Zhili Sun Fang Yao Ye Miao 《International Journal of Satellite Communications and Networking》2013,31(6):277-302
Because inter‐satellite links (ISLs) among the distributed satellite nodes can be used to support autonomous control in satellite system operation to reduce dependency on the ground stations, it becomes a popular communication paradigm for the future satellite systems. However, this introduces great technical challenges, particularly for routing protocol to support such space communication system. Facing the challenges, we present out study of routing technology in this paper tailored for satellite network of MEO (Table 1) and IGSO with ISLs in addition to satellite–ground links. The study aims to explore the routing strategies and algorithms of satellite network based on the evolution law of network topology to provide reference design for data exchange in autonomous satellite system. A comprehensive investigation, ranging from the analysis of relevant factors affecting data exchange in satellite networks to the primary application and resource constraints in designing satellite routing strategy, has been conducted. Our main contribution is to propose an on‐demand computing and caching centralized routing strategy and algorithm on the satellite network. The routing strategy and algorithm is designed for satellite network topology dynamic grouping. The route calculation for user data transmission is divided into three phases: direction estimation, direction enhancement, and congestion avoidance. The strategy and algorithm provide significant advantages of high efficiency, low complexity, and flexible configuration, by which the satellite networks can provide the features of flexible configure, efficient transferring, easy management, structural survivability, and great potential in scalability. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
3.
在分析传统卫星网络路由算法的基础上,提出一种基于分时的LEO卫星网络无环路由算法(DTRA)。针对卫星在各时间片之间进行路由表切换时可能出现的路由环问题,算法采用平滑路由表切换策略消除由于切换前后网络状态信息不一致而产生环路的可能性,保证分组在任何时刻都能够沿无环最短时延路径被转发。同时,DTRA也能够通过使用无环备份路径处理可能出现的链路拥塞、节点失败等突发情况。通过复杂性分析可知,算法只需较小的星上存储开销和星上处理开销,而无需星问通信开销。仿真实验结果也表明算法能够提供数据最优传送,具有较好的端到端时延性能。 相似文献
4.
Due to the rapid development of space communication, satellite networks will be confronted with more complex space environment in future, which poses the important demand on the design of the survivable and efficient routing protocols. Among satellite networks, two-layered Low Earth Orbit (LEO)/Medium Earth Orbit (MEO) satellite networks (LMSNs) have become an attractive architecture for their better communication service than single-layered satellite networks. To determine the topological dynamics of LMSN, the satellite group and group manager (SGGM) method is a prevalent strategy. However, it can not precisely capture the topological dynamics of the LEO layer, which may result in the unreliability of data transmission. Besides, most existing routing protocols based on the SGGM method will collapse once any top satellite fails. To overcome both limitations, this paper proposes a new topology control strategy for LMSNs. The proposed strategy determines the snapshot in terms of the topological change of the LEO layer, which ensures the topological consistency of routing calculation. Moreover, a new survivable routing protocol (SRP) is presented for LMSNs by combining both centralized and distributed routing strategies. The SRP can provide strong survivability under the LEO or MEO satellite failure. Besides, it can also achieve the minimum delay routing provided the MEO layer can effectively work. The performance of SRP is also evaluated by simulation and analysis. 相似文献
5.
单层卫星网络由于轨道高度和覆盖能力的不同,以至构成通信的单层系统往往不能满足不同业务服务质量的需求。分析了Walkerdelta型星座构建多层卫星通信网络的拓扑结构和ISL性能,提出了在统计分布模型下的多层卫星自适应路由策略,综合考虑了路径时延和ISL链路负载。仿真结果表明了多层网络自适应路由策略能够更加有效地分配网络通信量,网络具有较小的丢包率、网络平均归一化链路负载和特定路径综合路径权重,有利于降低网络平均阻塞概率和特定路径阻塞概率,获得更高的可靠性,较传统的单层非自适应路由更加有效、可靠。 相似文献
6.
This paper presents a novel framework for quality‐of‐service (QoS) multicast routing with resource allocation that represents QoS parameters, jitter delay, and reliability, as functions of adjustable network resources, bandwidth, and buffer, rather than static metrics. The particular functional form of QoS parameters depends on rate‐based service disciplines used in the routers. This allows intelligent tuning of QoS parameters as functions of allocated resources during the multicast tree search process, rather than decoupling the tree search from resource allocation. The proposed framework minimizes the network resource utilization while keeping jitter delay, reliability, and bandwidth bounded. This definition makes the proposed QoS multicast routing with resource allocation problem more general than the classical minimum Steiner tree problem. As an application of our general framework, we formulate the QoS multicast routing with resource allocation problem for a network consisting of generalized processor sharing nodes as a mixed‐integer quadratic program and find the optimal multicast tree with allocated resources to satisfy the QoS constraints. We then present a polynomial‐time greedy heuristic for the QoS multicast routing with resource allocation problem and compare its performance with the optimal solution of the mixed‐integer quadratic program. The simulation results reveal that the proposed heuristic finds near‐optimal QoS multicast trees along with important insights into the interdependency of QoS parameters and resources. 相似文献
7.
WangKaidong TianBin YiKechu 《电子科学学刊(英文版)》2005,22(1):77-84
A novel distributed packet routing algorithm for Low Earth Orbit (LEO) satellite networks based on spiderweb topology is presented. The algorithm gives the shortest path with very low computational complexity and without on-board routing tables, which is suitable and practical for on-board processing. Simulation results show its practicability and feasibility. 相似文献
8.
9.
In ad hoc wireless networks, the high mobility of hosts is usually a major reason for link failures. The general ‘shortest path’ based routing protocols may not lead to stable routes. In this paper, we propose a mobility assessment on‐demand (MAOD) routing protocol to select a stable route in order to enhance system throughput and performance. An error count parameter is used to judge whether a host is highly mobile. The proposed MAOD routing protocol is an on‐demand routing protocol similar to dynamic source routing (DSR). The difference between MAOD and DSR is in the path selection method. Because MAOD takes the mobility of hosts into consideration, it will select a more stable and reliable path than DSR. In comparison, DSR only considers whether this route is a shortest path or not. Finally, the system performance is analyzed by using the global mobile simulation (GloMoSim) simulator. We can observe that MAOD routing protocol outperforms DSR routing protocol especially in the high mobility environment. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
10.
LEO/MEO双层卫星星座是现代卫星通信系统星座研究的热点。运用理论分析的方法,对LEO/MEO双层卫星星座层间链路的链路距离、仰角、方位角等几何参数进行了研究,给出了各自的计算公式,并进行仿真分析。通过仿真发现,层间链路几何参数变化的突出特点是变化范围大、变化剧烈且周期性不明显。 相似文献
11.
提出一种基于卫星航点的分段路由(waypoint-segment routing,WSR)算法,WSR算法以可预测的卫星网络拓扑运动周期为基础,根据卫星节点链路状态确定卫星航点的位置;利用分段路由灵活规划分组传输路径的机制,提前响应网络拓扑变化,计算得到一条不受网络拓扑快照切换影响的传输路径。基于NS-3仿真平台进行仿真实验,设置源节点与目标节点在反向缝同侧与不同侧两种场景,选取优化链路状态路由(optimized link state routing,OLSR)算法和最短路径算法与WSR进行时延抖动与分组丢失率的对比分析。实验证明WSR与OLSR相比,两种场景下最大时延抖动分别降低46 ms与126 ms,分组丢失率分别降低30%和21%,并且能够解决拓扑快照切换导致分组传输路径中断的问题。 相似文献
12.
The varying population density leads to imbalanced utilization rate of satellites. To ensure an intelligent engineering of traffic over satellite networks, a distributed routing scheme for single-layered satellite network, load balancing routing protocol based on mobile agent (LBRP-MA) is proposed. For LBRP-MA, mobile agents explore route by migrating autonomously. Upon arriving at destination, mobile agents migrate back. On each intermediate satellite, mobile agents evaluate path cost considering satellite geographical position as well as inter-satellite link (ISL) cost, and finally take ISL congestion index into account to update routing tables. Through simulations on the Courier-like constellation, the proposed approach is shown to achieve guaranteed end-to-end delay bound and decrease packet loss ratio with better throughput, which is especially suitable for data transferring in case of high traffic load. Moreover, results of the complexity analysis demonstrate that LBRP-MA can have low onboard signaling, storage and computation requirements. Furthermore, issues of LBRP-MA such as ISL congestion index and cost modification factor are discussed. 相似文献
13.
R. Diana E. Lochin L. Franck C. Baudoin E. Dubois P. Gelard 《International Journal of Satellite Communications and Networking》2017,35(2):91-108
We propose a novel DTN routing algorithm, called DQN, specifically designed for quasi‐deterministic networks with an application to satellite constellations. We demonstrate that our proposal efficiently forwards the information over a satellite network derived from the Orbcomm topology while keeping a low replication overhead. We compare our algorithm against other well‐known DTN routing schemes and show that we obtain the lowest replication ratio with a delivery ratio of the same order of magnitude than a reference theoretical optimal routing. We also analyze the impact of terrestrial gateways density and analyze DQN performances in heterogeneous cases. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
14.
15.
A survey on routing protocols for wireless sensor networks 总被引:33,自引:0,他引:33
Recent advances in wireless sensor networks have led to many new protocols specifically designed for sensor networks where energy awareness is an essential consideration. Most of the attention, however, has been given to the routing protocols since they might differ depending on the application and network architecture. This paper surveys recent routing protocols for sensor networks and presents a classification for the various approaches pursued. The three main categories explored in this paper are data-centric, hierarchical and location-based. Each routing protocol is described and discussed under the appropriate category. Moreover, protocols using contemporary methodologies such as network flow and quality of service modeling are also discussed. The paper concludes with open research issues. 相似文献
16.
17.
William G. Cowley 《International Journal of Satellite Communications and Networking》2006,24(3):229-239
This paper considers the potential to achieve improved throughput in time‐varying satellite links which have flexibility in information bit rate and/or transmit power. We assume that other parameters of the link budget such as antenna gains and operating frequency are fixed. Simple results are derived, which illustrate what improvements in data throughput or power consumption are possible under two low‐earth orbit scenarios: inter‐satellite links and satellite to ground communications. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
18.
Ömer Korçak Fatih Alagöz Abbas Jamalipour 《International Journal of Communication Systems》2007,20(3):313-333
In a non‐geostationary satellite constellation with inter satellite links (ISLs), there could be many shortest paths between two satellites in terms of hop count. An efficient routing algorithm should effectively use these paths in order to distribute traffic to ISLs in a balanced way and to improve the performance of the system. This paper presents and evaluates a novel priority‐based adaptive shortest path routing (PAR) scheme in order to achieve this goal. PAR sets the path towards the destination in a distributed manner, using a priority mechanism depending on the past utilization and buffering information of the ISLs. Moreover, to avoid unnecessary splitting of a flow and to achieve better utilization of ISLs, enhanced PAR (ePAR) scheme is proposed. This paper evaluates performance of the proposed techniques by employing an extensive set of simulations. Furthermore, since there are a number of ePAR parameters that should be adjusted depending on the network and traffic characteristics, a detailed analysis of ePAR scheme is provided to form a framework for setting the parameters. This paper also includes a method for adaptation of the proposed algorithms to minimum‐delay path routing. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
19.
Markus Werner Jochen Frings Frdric Wauquiez Grard Maral 《International Journal of Satellite Communications and Networking》2001,19(6):499-527
This paper considers the network design of intersatellite link (ISL) networks in broadband LEO satellite systems, where the major challenge is the topology dynamics. First, a general method to design convenient ISL topologies for connection‐oriented operation is presented, and a reference topology for numerical studies is derived. A permanent virtual topology is then defined on top of the orbiting physical one, thus forming a framework for discrete‐time dynamic traffic routing. On this basis, heuristic and optimization approaches for the combined routing and dimensioning task, operating on discrete time steps, are presented and their performance is numerically compared. It is shown that minimizing the worst‐case link capacity is an appropriate target function, which can be formulated as linear optimization problem with linear constraints. Using linear programming (LP) techniques, the dimensioning results are clearly better than with simple heuristic approaches. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
20.
Low earth orbit(LEO) satellite network provides global coverage and supports a wide range of services. However, due to the rapid changes and energy-limitation of satellites, how to meet the demand of the quality of service(QoS) from ground traffic and prolong the lifetime of LEO satellite network is the research emphasis of the investigator. Hence, a routing algorithm which takes into account the multi-QoS requirements and satellite energy consumption(QER) of LEO satellite network is proposed. Firstly, the satellite intimacy degree(SID) and the path health degree(PHD) are introduced to obtain the path evaluation function according to the energy consumption and queue state of the satellite. Then, the distributed routing QER is established through the path evaluation function and the idea of genetic algorithm(GA), which enables each satellite to adjust traffic and realizes the network load balancing. Simulation results show that QER performs well in terms of end-to-end delay, delay jitter, and system throughput. 相似文献