首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanics of the interaction between a fluid and a soft interface undergoing large deformations appear in many places, such as in biological systems or industrial processes. We present an Eulerian approach that describes the mechanics of an interface and its interactions with a surrounding fluid via the so‐called Navier boundary condition. The interface is modeled as a curvilinear surface with arbitrary mechanical properties across which discontinuities in pressure and tangential fluid velocity can be accounted for using a modified version of the extended finite element method. The coupling between the interface and the fluid is enforced through the use of Lagrange multipliers. The tracking and evolution of the interface are then handled in a Lagrangian step with the grid‐based particle method. We show that this method is ideal to describe large membrane deformations and Navier boundary conditions on the interface with velocity/pressure discontinuities. The validity of the model is assessed by evaluating the numerical convergence for a axisymmetrical flow past a spherical capsule with various surface properties. We show the effect of slip length on the shear flow past a two‐dimensional capsule and simulate the compression of an elastic membrane lying on a viscous fluid substrate. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
This paper primarily deals with the computational aspects of chemical dissolution‐front instability problems in two‐dimensional fluid‐saturated porous media under non‐isothermal conditions. After the dimensionless governing partial differential equations of the non‐isothermal chemical dissolution‐front instability problem are briefly described, the formulation of a computational procedure, which contains a combination of using the finite difference and finite element method, is derived for simulating the morphological evolution of chemical dissolution fronts in the non‐isothermal chemical dissolution system within two‐dimensional fluid‐saturated porous media. To ensure the correctness and accuracy of the numerical solutions, the proposed computational procedure is verified through comparing the numerical solutions with the analytical solutions for a benchmark problem. As an application example, the verified computational procedure is then used to simulate the morphological evolution of chemical dissolution fronts in the supercritical non‐isothermal chemical dissolution system. The related numerical results have demonstrated the following: (1) the proposed computational procedure can produce accurate numerical solutions for the planar chemical dissolution‐front propagation problem in the non‐isothermal chemical dissolution system consisting of a fluid‐saturated porous medium; (2) the Zhao number has a significant effect not only on the dimensionless propagation speed of the chemical dissolution front but also on the distribution patterns of the dimensionless temperature, dimensionless pore‐fluid pressure, and dimensionless chemical‐species concentration in a non‐isothermal chemical dissolution system; (3) once the finger penetrates the whole computational domain, the dimensionless pore‐fluid pressure decreases drastically in the non‐isothermal chemical dissolution system.  相似文献   

3.
This paper presents a comprehensive finite‐element modelling approach to electro‐osmotic flows on unstructured meshes. The non‐linear equation governing the electric potential is solved using an iterative algorithm. The employed algorithm is based on a preconditioned GMRES scheme. The linear Laplace equation governing the external electric potential is solved using a standard pre‐conditioned conjugate gradient solver. The coupled fluid dynamics equations are solved using a fractional step‐based, fully explicit, artificial compressibility scheme. This combination of an implicit approach to the electric potential equations and an explicit discretization to the Navier–Stokes equations is one of the best ways of solving the coupled equations in a memory‐efficient manner. The local time‐stepping approach used in the solution of the fluid flow equations accelerates the solution to a steady state faster than by using a global time‐stepping approach. The fully explicit form and the fractional stages of the fluid dynamics equations make the system memory efficient and free of pressure instability. In addition to these advantages, the proposed method is suitable for use on both structured and unstructured meshes with a highly non‐uniform distribution of element sizes. The accuracy of the proposed procedure is demonstrated by solving a basic micro‐channel flow problem and comparing the results against an analytical solution. The comparisons show excellent agreement between the numerical and analytical data. In addition to the benchmark solution, we have also presented results for flow through a fully three‐dimensional rectangular channel to further demonstrate the application of the presented method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
基于宏观熔体流动的基本理论及其流动过程中壁面滑移机理的分析,针对微注塑成型模具中熔体充模流动时的壁面滑移行为,建立了微小通道中高聚物熔体流动的壁面滑移理论模型。并用数值模拟方法,对不同滑移系数时微小通道中熔体的壁面滑移对流动速度、熔体压力等的影响进行了研究。结果表明,微小通道中的壁面滑移可使壁面处熔体的流动速度增加,压力损失减小,有利于熔体的充模流动。  相似文献   

5.
A Galerkin/least‐squares (GLS) finite element formulation for problem of consolidation of fully saturated two‐phase media is presented. The elimination of spurious pressure oscillations appearing at the early stage of consolidation for standard Galerkin finite elements with equal interpolation order for both displacements and pressures is the goal of the approach. It will be shown that the least‐squares term, based exclusively on the residuum of the fluid flow continuity equation, added to the standard Galerkin formulation enhances its stability and can fully eliminate pressure oscillations. A reasonably simple framework designed for derivation of one‐dimensional as well as multi‐dimensional estimates of the stabilization factor is proposed and then verified. The formulation is validated on one‐dimensional and then on two‐dimensional, linear and non‐linear test problems. The effect of the fluid incompressibility as well as compressibility will be taken into account and investigated. Copyright © 2001 John Wiley & Sons Ltd.  相似文献   

6.
We present the development of a two‐dimensional Mixed‐Hybrid Finite Element (MHFE) model for the solution of the non‐linear equation of variably saturated flow in groundwater on unstructured triangular meshes. By this approach the Darcy velocity is approximated using lowest‐order Raviart–Thomas (RT0) elements and is ‘exactly’ mass conserving. Hybridization is used to overcome the ill‐conditioning of the mixed system. The scheme is globally first‐order in space. Nevertheless, numerical results employing non‐uniform meshes show second‐order accuracy of the pressure head and normal fluxes on specific grid points. The non‐linear systems of algebraic equations resulting from the MHFE discretization are solved using Picard or Newton iterations. Realistic sample tests show that the MHFE‐Newton approach achieves fast convergence in many situations, in particular, when a good initial guess is provided by either the Picard scheme or relaxation techniques. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
This paper describes a novel methodology that combines smoothed discrete particle hydrodynamics (SDPH) and finite volume method (FVM) to enhance the effective performance in solving the problems of gas‐particle multiphase flow. To describe the collision and fluctuation of particles, this method also increases a new parameter, namely, granular temperature, according to the kinetic theory of granular flow. The coupled framework of SDPH–FVM has been established, in which the drag force and pressure gradient act on the SDPH particles and the momentum sources of drag force are added back onto the FVM mesh. The proposed technique is a coupled discrete‐continuum method based on the two‐fluid model. To compute for the discrete phase, its SDPH is developed from smoothed particle hydrodynamics (SPH), in which the properties of SPH are redefined with some new physical quantities added into the traditional SPH parameters, so that it is more beneficial for SDPH in representing the particle characteristics. For the continuum phase, FVM is employed to discretize the continuum flow field on a stationary grid by capturing fluid characteristics. The coupled method exhibits strong efficiency and accuracy in several two‐dimensional numerical simulations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
The molecular dynamics (MD)–continuum hybrid simulation method has been developed in two aspects in the present work: (1) The energy equation has been combined into the coupling method in order to obtain the hybrid temperature profile and (2) the coupling method has been improved by the local linearization to obtain a smoother parametric profile. The developed method is primarily validated by analytical solutions and full MD results. Then, it is employed to study the scale effect on the flow and thermal boundaries in micro‐/nano‐channel flow. The hybrid velocity and temperature profiles are obtained with the channel height (H) ranging from 60σ to 2014σ and the solid–liquid coupling (β) ranging from 0.1 to 50. Scale effect has shown strong influence on the boundaries. Obvious slip characteristics can be found in the profiles, i.e. velocity slip and temperature jump, when H is small and β is large. However, the results also show that the profiles can be well predicted to converge to the macroscale non‐slip/non‐jump analytical solutions when H is large enough, where the effect of β can be omitted and the slip characteristics disappear. Correlations of relative slip length, relative temperature jump and pressure gradient with H are fitted from the simulation results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Summary The assumption that a liquid adheres to a solid boundary (no-slip boundary condition) is one of the central tenets of the Navier-Stokes theory. However, there are situations wherein this assumption does not hold. In this paper we investigate the consequences of slip at the wall on the flow of a linearly viscous fluid in a channel. Usually, the slip is assumed to depend on the shear stress at the wall. However, a number of experiments suggests that the slip velocity also depends on the normal stress. Thus, we investigate the flow of a linearly viscous fluid when the slip depends on both the shear stress and the normal stress. In regions where the slip velocity depends strongly on the normal stress, the flow field in a channel is not fully developed and rectilinear flow is not possible. Also, it is shown that, in general, traditional methods such as the Mooney method cannot be used for calculating the slip velocity.  相似文献   

10.
The non‐ideal detonation performance of two commercial explosives is determined using the DeNE and JWL++ codes. These two codes differ in that DeNE is based on a pseudo‐one‐dimensional theory which is valid on the central stream‐tube and capable of predicting the non‐ideal detonation characteristics of commercial explosives as a function of the explosive type, rock properties and blasthole diameter. On the other hand, JWL++ is a hydrocode running in a 2‐D arbitrary Lagrangian–Eulerian code with CALE‐like properties and can determine the flow properties in all stream lines within the reaction zone. The key flow properties (detonation velocity, pressure, specific volume, extent of reaction and reaction zone length) at the sonic locus on the charge axis have been compared. In general, it is shown that the flow parameters determined using both codes agree well. The pressure contours determined using the JWL++ are analysed in detail for two explosives at 165 mm blastholes confined in limestone and kimberlite with a view to further investigate the explosive/rock interface. The DeNE and JWL++ codes have been validated using the measured in‐hole detonation velocity data. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
The motion of a two‐dimensional glacier is considered. At each time step, given the shape of the glacier, ice is modelled as an incompressible non‐Newtonian fluid and a non‐linear elliptic problem has to be solved to obtain the horizontal velocity field. Then, the upper surface of the glacier is updated by solving a transport equation. Finite element techniques are used to compute the velocity field whereas the transport equation is solved using a Lax–Wendroff scheme. Numerical results are compared to experiments on Gries glacier (Wallis, Switzerland) between 1961 and 1991. Then, a predition for 2021 is proposed. Copyright 2004 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper the meshless local boundary integral equation (LBIE) method for numerically solving the non‐linear two‐dimensional sine‐Gordon (SG) equation is developed. The method is based on the LBIE with moving least‐squares (MLS) approximation. For the MLS, nodal points spread over the analyzed domain are utilized to approximate the interior and boundary variables. The approximation functions are constructed entirely using a set of scattered nodes, and no element or connectivity of the nodes is needed for either the interpolation or the integration purposes. A time‐stepping method is employed to deal with the time derivative and a simple predictor–corrector scheme is performed to eliminate the non‐linearity. A brief discussion is outlined for numerical integrations in the proposed algorithm. Some examples involving line and ring solitons are demonstrated and the conservation of energy in undamped SG equation is investigated. The final numerical results confirm the ability of method to deal with the unsteady non‐linear problems in large domains. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Slip velocities of unfilled and talc-filled polypropylene (PP) compounds, detectable at the die wall during pressure driven shear flow, have been determined using capillary rheometry. The presence of low molar mass, polar additives is responsible for the detection of wall slip in unmodified PP. Slip velocity increases with shear stress, beyond the critical onset condition. Increasing talc concentration in the PP compounds reduces slip velocity systematically, according to the talc volume fraction, whilst talc particle morphology appears to modify the wall slip behaviour to a greater extent than particle size. In comparison to PP-talc composites based on untreated filler, the presence of surface coatings tends to increase wall slip velocity, at any given shear stress, when the coating concentration exceeds monolayer level. These observations are explained in terms of a mechanism for wall slip in a low cohesive strength interphase, rich in low molar mass amide species, close to the flow boundary. This behaviour has also been modelled using a power law, to define wall slip parameters as a function of shear stress and talc concentration that can be used to enhance process simulation. It is demonstrated that the onset and magnitude of wall slip may be controllable by compound formulation and process conditions, creating exploitation potential to enhance process control and product properties of particle-modified PP composites.  相似文献   

14.
An incompressible separated transitional boundary‐layer flow on a flat plate with a semi‐circular leading edge has been simulated and a very good agreement with the experimental data has been obtained, demonstrating how this technique may be applied even when finite difference formulae are used in the periodic direction. The entire transition process has been elucidated and vortical structures have been identified at different stages during the transition process. Efficient numerical methods for the large‐eddy simulation (LES) of turbulent flows in complex geometry are developed. The methods used are described in detail: body‐fitted co‐ordinates with the contravariant velocity components of the general Navier–Stokes equations discretized on a staggered mesh with a dynamic subgrid‐scale model in general co‐ordinates. The main source of computational expense in simulations for incompressible flows is due to the solution of a Poisson equation for pressure. This is especially true for flows in complex geometry. Fourier techniques can be employed to speed up the pressure solution significantly for a flow which is periodic in one dimension. With simple conditions fulfilled, it is possible to Fourier transform a discrete elliptic equation such as the Poisson equation for the pressure field, decomposing the problem into a set of two‐dimensional problems of similar type (Poisson‐like). Even when a complex geometry and body‐fitted curvilinear co‐ordinates are used in the other two dimensions, as in the present case, the resulting Fourier‐transformed 2D problems are much more efficiently solved than the 3D problem by iterative means. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
Efficient simulation of unsaturated moisture flow in porous media is of great importance in many engineering fields. The highly non‐linear character of unsaturated flow typically gives sharp moving moisture fronts during wetting and drying of materials with strong local moisture permeability and capacity variations as result. It is shown that these strong variations conflict with the common preference for low‐order numerical integration in finite element simulations of unsaturated moisture flow: inaccurate numerical integration leads to errors that are often far more important than errors from inappropriate discretization. In response, this article develops adaptive integration, based on nested Kronrod–Patterson–Gauss integration schemes: basically, the integration order is adapted to the locally observed grade of non‐linearity. Adaptive integration is developed based on a standard infiltration problem, and it is demonstrated that serious reductions in the numbers of required integration points and discretization nodes can be obtained, thus significantly increasing computational efficiency. The multi‐dimensional applicability is exemplified with two‐dimensional wetting and drying applications. While developed for finite element unsaturated moisture transfer simulation, adaptive integration is similarly applicable for other non‐linear problems and other discretization methods, and whereas perhaps outperformed by mesh‐adaptive techniques, adaptive integration requires much less implementation and computation. Both techniques can moreover be easily combined. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
We present three velocity‐based updated Lagrangian formulations for standard and quasi‐incompressible hypoelastic‐plastic solids. Three low‐order finite elements are derived and tested for non‐linear solid mechanics problems. The so‐called V‐element is based on a standard velocity approach, while a mixed velocity–pressure formulation is used for the VP and the VPS elements. The two‐field problem is solved via a two‐step Gauss–Seidel partitioned iterative scheme. First, the momentum equations are solved in terms of velocity increments, as for the V‐element. Then, the constitutive relation for the pressure is solved using the updated velocities obtained at the previous step. For the VPS‐element, the formulation is stabilized using the finite calculus method in order to solve problems involving quasi‐incompressible materials. All the solid elements are validated by solving two‐dimensional and three‐dimensional benchmark problems in statics as in dynamics. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
A new numerical approach for solving incompressible two‐phase flows is presented in the framework of the recently developed Consistent Particle Method (CPM). In the context of the Lagrangian particle formulation, the CPM computes spatial derivatives based on the generalized finite difference scheme and produces good results for single‐phase flow problems. Nevertheless, for two‐phase flows, the method cannot be directly applied near the fluid interface because of the abrupt discontinuity of fluid density resulting in large change in pressure gradient. This problem is resolved by dealing with the pressure gradient normalized by density, leading to a two‐phase CPM of which the original singlephase CPM is a special case. In addition, a new adaptive particle selection scheme is proposed to overcome the problem of ill‐conditioned coefficient matrix of pressure Poisson equation when particles are sparse and non‐uniformly spaced. Numerical examples of Rayleigh–Taylor instability, gravity current flow, water‐air sloshing and dam break are presented to demonstrate the accuracy of the proposed method in wave profile and pressure solution. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
《Composites Part A》2002,33(7):1007-1019
Correct modeling of resin flow in liquid composite molding (LCM) processes is important for accurate simulation of the mold-filling process. Recent experiments indicate that the physics of resin flow in woven (also stitched or braided) fiber mats is very different from the flow in random fiber mats. The dual length-scale porous media created by the former leads to the formation of a sink term in the equation of continuity; such an equation in combination with the Darcy's law successfully replicate the drooping inlet pressure history, and the region of partial saturation behind the flow-front, for the woven mats. In this paper, the mathematically rigorous volume averaging method is adapted to derive the averaged form of mass and momentum balance equations for unsaturated flow in LCM. The two phases used in the volume averaging method are the dense bundle of fibers called tows, and the surrounding gap present in the woven fiber mats. Averaging the mass balance equation yields a macroscopic equation of continuity which is similar to the conventional continuity equation for a single-phase flow except for a negative sink term on the right-hand side of the equation. This sink term is due to the delayed impregnation of fiber tows and is equal to the rate of liquid absorbed per unit volume. Similar averaging of the momentum balance equation is accomplished for the dual-scale porous medium. During the averaging process, the dynamic interaction of the gap flow with the tow walls is lumped together as the drag force. A representation theorem and dimensional analysis are used to replace this drag force with a linear function of an average of the relative velocity of the gap fluid with respect to the tow matrix for both the isotropic and anisotropic media. Averaging of the shear stress term of the Navier–Stokes equation gives rise to a new quantity named the interfacial kinetic effects tensor which includes the effects of liquid absorption by the tows, and the presence of slip velocity on their surface. Though the gradient of the tensor contributes a finite force in the final momentum balance equation, a scaling analysis leads to its rejection in the fibrous dual-scale porous medium if the permeability of flow through the gaps is small. For such a porous medium, the momentum equation reduces to the Darcy's law for single-phase flow.  相似文献   

19.
A three‐dimensional numerical model is presented for three‐phase flow (moisture, air, and heat) in a deformable partly saturated soil with deformation calculated via a non‐linear elastic theory. The present work is an extension of a two‐dimensional analysis presented by Thomas and He. The objective of this work is the solution of problems of greater geometric complexity. The mathematical formulation of this coupled problem consists of four governing equations, developed from the principles of mass and energy conservations as well as the stress equilibrium equation. Darcy's flow law is used to describe the motion of liquid and air in the porous medium, and a Philip and de Vries type vapour flow approach is employed in the formulation. A Galerkin finite element method coupled with a finite difference recurrence relationship is used to obtain simultaneous solutions to the governing equations where pore liquid, pore air pressures, temperature and displacements are the primary variables. The method allows the non‐linear nature of the soil parameters to be modelled. Three‐dimensional 20‐noded isoparametric elements are used to simulate different types of cases for the verification of the work. Results are presented of the application of the new model to four problems, two of which are isothermal and two heating simulations. The three‐dimensional nature of the results achieved is highlighted. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
A two‐scale numerical model is developed for fluid flow in fractured, deforming porous media. At the microscale the flow in the cavity of a fracture is modelled as a viscous fluid. From the micromechanics of the flow in the cavity, coupling equations are derived for the momentum and the mass couplings to the equations for a fluid‐saturated porous medium, which are assumed to hold on the macroscopic scale. The finite element equations are derived for this two‐scale approach and integrated over time. By exploiting the partition‐of‐unity property of the finite element shape functions, the position and direction of the fractures is independent from the underlying discretization. The resulting discrete equations are non‐linear due to the non‐linearity of the coupling terms. A consistent linearization is given for use within a Newton–Raphson iterative procedure. Finally, examples are given to show the versatility and the efficiency of the approach, and show that faults in a deforming porous medium can have a significant effect on the local as well as on the overall flow and deformation patterns. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号