首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An adaptive finite element procedure is developed for modelling transient phenomena in elastic solids, including both wave propagation and structural dynamics. Although both temporal and spatial adaptivity are addressed, the novel feature of the formulation is the use of mesh superposition to produce spatial refinement (referred to as s‐adaptivity) in transient problems. Spatial error estimation is based on superconvergent patch recovery of higher‐order accurate stresses and is used to guide mesh adaptivity, while the temporal error estimation is based on the assumption of linearly varying third‐order time derivatives of the displacement field and is used to adjust the time step size for the HHT‐α variant of the Newmark direct numerical integration method. Spatial adaptivity of the mesh is performed using a hierarchical h‐refinement scheme that is efficiently implemented using a structured version of finite element mesh superposition. This particular spatial adaptivity scheme is extremely fast and consequently makes it feasible to repeatedly update both the mesh and the time increment as required in an adaptive transient analysis. This work represents the initial effort in applying this type of spatial adaptivity to transient problems. Three example problems are given to demonstrate the performance characteristics of the s‐adaptive procedure. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
A variational h‐adaptive finite element formulation is proposed. The distinguishing feature of this method is that mesh refinement and coarsening are governed by the same minimization principle characterizing the underlying physical problem. Hence, no error estimates are invoked at any stage of the adaption procedure. As a consequence, linearity of the problem and a corresponding Hilbert‐space functional framework are not required and the proposed formulation can be applied to highly non‐linear phenomena. The basic strategy is to refine (respectively, unrefine) the spatial discretization locally if such refinement (respectively, unrefinement) results in a sufficiently large reduction (respectively, sufficiently small increase) in the energy. This strategy leads to an adaption algorithm having O(N) complexity. Local refinement is effected by edge‐bisection and local unrefinement by the deletion of terminal vertices. Dissipation is accounted for within a time‐discretized variational framework resulting in an incremental potential energy. In addition, the entire hierarchy of successive refinements is stored and the internal state of parent elements is updated so that no mesh‐transfer operator is required upon unrefinement. The versatility and robustness of the resulting variational adaptive finite element formulation is illustrated by means of selected numerical examples. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents a finite element solver for the simulation of steady non‐Newtonian flow problems, using a regularized Bingham model, with adaptive mesh refinement capabilities. The solver is based on a stabilized formulation derived from the variational multiscale framework. This choice allows the introduction of an a posteriori error indicator based on the small scale part of the solution, which is used to drive a mesh refinement procedure based on element subdivision. This approach applied to the solution of a series of benchmark examples, which allow us to validate the formulation and assess its capabilities to model 2D and 3D non‐Newtonian flows.  相似文献   

4.
In this paper an adaptive method for the analysis of thermomechanical coupled multi‐body contact problems is presented. The method is applied to non‐linear elastic solids undergoing finite (thermal) deformations. The contact model considers non‐linear pressure‐dependent heat flux as well as frictional heating in the interface. A time–space‐finite element discretization of the governing equations is formulated including unilateral constraints due to contact. A staggered solution algorithm has been constructed that allows an independent spatial discretization of the coupled subproblems. A posteriori projection‐based error estimators, which enforce implicitly the special boundary conditions due to thermal contact, are used to control the spatial discretization as well as the adaptive time stepping. Numerical examples are presented to corroborate the applicability of the adaptive algorithm to the considered problem type. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
This paper describes an adaptive hp-version mesh refinement strategy and its application to the finite element solution of one-dimensional flame propagation problems. The aim is to control the spatial and time discretization errors below a prescribed error tolerance at all time levels. In the algorithm, the optimal time step is first determined in an adaptive manner by considering the variation of the computable error in the reaction zone. Later, the method uses a p-version refinement till the computable a posteriori error is brought down below the tolerance. During the p-version, if the maximum allowable degree of approximation is reached in some elements of the mesh without satisfying the global error tolerance criterion, then conversion from p- to h-version is performed. In the conversion procedure, a gradient based non-uniform h-version refinement has been introduced in the elements of higher degree approximation. In this way, p-version and h-version approaches are used alternately till the a posteriori error criteria are satisfied. The mesh refinement is based on the element error indicators, according to a statistical error equi-distribution procedure. Numerical simulations have been carried out for a linear parabolic problem and premixed flame propagation in one-space dimension. © 1997 John Wiley & Sons, Ltd.  相似文献   

6.
In the paper we present a postprocessed type of a posteriori error estimate and a h-version adaptive procedure for the semidiscrete finite element method in dynamic analysis. In space the super-convergent patch recovery technique is used for determining higher-order accurate stresses and, thus, a spatial error estimate. In time a postprocessing technique is developed for obtaining a local error estimate for one step time integration schemes (the HHT-α method). Coupling the error estimate with a mesh generator, a h-version adaptive finite element procedure is presented for two-dimensional dynamic analysis. It updates the spatial mesh and time step automatically so that the discretization errors are controlled within specified tolerances. Numerical studies on different problems are presented for demonstrating the performances of the proposed adaptive procedure.  相似文献   

7.
This paper describes a p‐hierarchical adaptive procedure based on minimizing the classical energy norm for the scaled boundary finite element method. The reference solution, which is the solution of the fine mesh formed by uniformly refining the current mesh element‐wise one order higher, is used to represent the unknown exact solution. The optimum mesh is assumed to be obtained when each element contributes equally to the global error. The refinement criteria and the energy norm‐based error estimator are described and formulated for the scaled boundary finite element method. The effectivity index is derived and used to examine quality of the proposed error estimator. An algorithm for implementing the proposed p‐hierarchical adaptive procedure is developed. Numerical studies are performed on various bounded domain and unbounded domain problems. The results reflect a number of key points. Higher‐order elements are shown to be highly efficient. The effectivity index indicates that the proposed error estimator based on the classical energy norm works effectively and that the reference solution employed is a high‐quality approximation of the exact solution. The proposed p‐hierarchical adaptive strategy works efficiently. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
The adaptive finite element methods developed by the authors for a class of 2‐D problems in computational electromagnetics are presented. The cases covered are: magnetostatic, electrostatic, DC conduction and linear AC steady‐state eddy currents, both plane and axialsymmetric. Theory is developed in the linear case only, but the resulting methods are applied on a heuristic basis also to non‐linear cases and prove able to cope with them. These methods make use of an element‐by‐element error estimation and two different h‐refinement techniques to adapt meshes made up of first or second‐order triangular elements. Element‐by‐ element error estimation has two main advantages: it is well suited to cope with the intricate geometries of electromagnetic devices and, at the same time, very cheap from a computational viewpoint. The local error is estimated by approximately solving a differential problem in each element. Theory on which this error estimation method is grounded is developed in full details and the underlying assumptions are pointed out. The presence in electromagnetic problems of surface currents and interfaces between different materials poses new problems in the error estimation with respect to other applications in which similar methods are used. The h‐refinement technique can be selected between the bisection method and the centroid method followed by a Delaunay step. Accuracy and efficiency of the proposed method is discussed on the basis of previous work of the authors and further numerical experiments. Applications to realistic models showing good performances of the proposed methods are reported. Copyright © 1999 John wiley & Sons, Ltd.  相似文献   

9.
An adaptive mesh refinement (AMR) technique is proposed for level set simulations of incompressible multiphase flows. The present AMR technique is implemented for two‐dimensional/three‐dimensional unstructured meshes and extended to multi‐level refinement. Smooth variation of the element size is guaranteed near the interface region with the use of multi‐level refinement. A Courant–Friedrich–Lewy condition for zone adaption frequency is newly introduced to obtain a mass‐conservative solution of incompressible multiphase flows. Finite elements around the interface are dynamically refined using the classical element subdivision method. Accordingly, finite element method is employed to solve the problems governed by the incompressible Navier–Stokes equations, using the level set method for dynamically updated meshes. The accuracy of the adaptive solutions is found to be comparable with that of non‐adaptive solutions only if a similar mesh resolution near the interface is provided. Because of the substantial reduction in the total number of nodes, the adaptive simulations with two‐level refinement used to solve the incompressible Navier–Stokes equations with a free surface are about four times faster than the non‐adaptive ones. Further, the overhead of the present AMR procedure is found to be very small, as compared with the total CPU time for an adaptive simulation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Computer‐aided mesh generation (CAMG) dictated solely by the minimal key set of requirements of geometry, material, loading and support condition can produce ‘mega‐sized’, arbitrary‐shaped distorted elements. However, this may result in substantial cost saving and reduced bookkeeping for the subsequent finite element analysis (FEA) and reduced engineering manpower requirement for final quality assurance. A method, denoted as c‐type, has been proposed by constructively defining a finite element space whereby the above hurdles may be overcome with a minimal number of hyper‐sized elements. Bezier (and de Boor) control vectors are used as the generalized displacements and the Bernstein polynomials (and B‐splines) as the elemental basis functions. A concomitant idea of coerced parametry and inter‐element continuity on demand unifies modelling and finite element method. The c‐type method may introduce additional control, namely, an inter‐element continuity condition to the existing h‐type and p‐type methods. Adaptation of the c‐type method to existing commercial and general‐purpose computer programs based on a conventional displacement‐based finite element method is straightforward. The c‐type method with associated subdivision technique can be easily made into a hierarchic adaptive computer method with a suitable a posteriori error analysis. In this context, a summary of a geometrically exact non‐linear formulation for the two‐dimensional curved beams/arches is presented. Several beam problems ranging from truly three‐dimensional tortuous linear curved beams to geometrically extremely non‐linear two‐dimensional arches are solved to establish numerical efficiency of the method. Incremental Lagrangian curvilinear formulation may be extended to overcome rotational singularity in 3D geometric non‐linearity and to treat general material non‐linearity. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
An r-h adaptive scheme has been proposed and formulated for analysis of bimaterial interface problems using adaptive finite element method. It involves a combination of the configurational force based r-adaption with weighted laplacian smoothing and mesh enrichment by h-refinement. The Configurational driving force is evaluated by considering the weak form of the material force balance for bimaterial inerface problems. These forces assembled at nodes act as an indicator for r-adaption. A weighted laplacian smoothing is performed for smoothing the mesh. The h-adaptive strategy is based on a modifed weighted energy norm of error evaluated using supercovergent estimators. The proposed method applies specific non sliding interface strain compatibility requirements across inter material boundaries consistent with physical principles to obtain modified error estimators. The best sequence of combining r- and h-adaption has been evolved from numerical study. The study confirms that the proposed combined r-h adaption is more efficient than a purely h-adaptive approach and more flexible than a purely r-adaptive approach with better convergence characteristics and helps in obtaining optimal finite element meshes for a specified accuracy.  相似文献   

12.
An a posteriori error estimator is proposed in this paper for the p‐ and hp‐versions of the finite element method in two‐dimensional linear elastostatic problems. The local error estimator consists in an enhancement of an error indicator proposed by Bertóti and Szabó (Int. J. Numer. Meth. Engng. 1998; 42 :561–587), which is based on the minimum complementary energy principle. In order to obtain the local error estimate, this error indicator is corrected by a factor which depends only on the polynomial degree of the element. The proposed error estimator shows a good effectivity index in meshes with uniform and non‐uniform polynomial distributions, especially when the global error is estimated. Furthermore, the local error estimator is reliable enough to guide p‐ and hp‐adaptive refinement strategies. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
In this work we investigate the a posteriori error estimation for a class of non‐linear, multicomponent diffusion operators, which includes the Stefan–Maxwell equations. The local error indicators for the global error are based on local boundary value problems, which are chosen to approximate either the global residual of the finite element approximation or the global linearized error equation. Using representative numerical examples, it is shown that the error indicators based on the latter approach are more accurate for estimating the global error for this problem class as the problem becomes more non‐linear, and can even produce better adaptive mesh refinement (AMR). In addition, we propose a new local error indicator for the error in output functionals that is accurate, inexpensive to compute, and is suitable for AMR, as demonstrated by numerical examples. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
A spatial mesh adaptation procedure in semidiscrete finite element analysis of 2D linear elastodynamic problems is presented. The procedure updates, through an automatic remeshing scheme, the spatial mesh when found necessary in order to gain control of the spatial discretization error from time to time. An a posteriori error estimate developed by Zienkiewicz and Zhu (1987) for elliptic problems is extended to dynamic analysis to estimate the spatial discretization error at a certain time, which is found to be reasonable by analyzing an a priori error estimate. Numerical examples are used to demonstrate the performance of the procedure. It is indicated that the extended error estimation and the procedure are capable of monitoring the moving of steep stress regions by updating the spatial mesh according to a prescribed error tolerance, thus providing a reliable finite element solution in an efficient manner.  相似文献   

15.
This work presents two new error estimation approaches for the BEM applied to 2D potential problems. The first approach involves a local error estimator based on a gradient recovery procedure in which the error function is generated from differences between smoothed and non‐smoothed rates of change of boundary variables in the local tangential direction. The second approach involves the external problem formulation and gives both local and global measures of error, depending on a choice of the external evaluation point. These approaches are post‐processing procedures. Both estimators show consistency with mesh refinement and give similar qualitative results. The error estimator using the gradient recovery approach is more general, as this formulation does not rely on an ‘optimal’ choice of an external parameter. This work presents also the use of a local error estimator in an adaptive mesh refinement procedure. This r‐refinement approach is based on the minimization of the standard deviation of the local error estimate. A non‐linear programming procedure using a feasible‐point method is employed using Lagrange multipliers and a set of active constraints. The optimization procedure produces finer meshes close to a singularity and results that are consistent with the problem physics. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents an adaptive refinement strategy based on a hierarchical element subdivision dedicated to modelling elastoplastic materials in transient dynamics. At each time step, the refinement is automatic and starts with the calculation of the solution on a coarse mesh. Then, an error indicator is used to control the accuracy of the solution and a finer localized mesh is created where the user‐prescribed accuracy is not reached. A new calculation is performed on this new mesh using the non‐linear ‘Full Approximation Scheme’ multigrid strategy. Applying the error indicator and the refinement strategy recursively, the optimal mesh is obtained. This mesh verifies the error indicator on the whole structure. The multigrid strategy is used for two purposes. First, it optimizes the computational cost of the solution on the finest localized mesh. Second, it ensures information transfer among the different hierarchical meshes. A standard time integration scheme is used and the mesh is reassessed at each time step. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Adaptive algorithms are important tools for efficient finite‐element mesh design. In this paper, an error controlled adaptive mesh‐refining algorithm is proposed for a non‐conforming low‐order finite‐element method for the Reissner–Mindlin plate model. The algorithm is controlled by a reliable and efficient residual‐based a posteriori error estimate, which is robust with respect to the plate's thickness. Numerical evidence for this and the efficiency of the new algorithm is provided in the sense that non‐optimal convergence rates are optimally improved in our numerical experiments. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
Unit‐cell homogenization techniques are frequently used together with the finite element method to compute effective mechanical properties for a wide range of different composites and heterogeneous materials systems. For systems with very complicated material arrangements, mesh generation can be a considerable obstacle to usage of these techniques. In this work, pixel‐based (2D) and voxel‐based (3D) meshing concepts borrowed from image processing are thus developed and employed to construct the finite element models used in computing the micro‐scale stress and strain fields in the composite. The potential advantage of these techniques is that generation of unit‐cell models can be automated, thus requiring far less human time than traditional finite element models. Essential ideas and algorithms for implementation of proposed techniques are presented. In addition, a new error estimator based on sensitivity of virtual strain energy to mesh refinement is presented and applied. The computational costs and rate of convergence for the proposed methods are presented for three different mesh‐refinement algorithms: uniform refinement; selective refinement based on material boundary resolution; and adaptive refinement based on error estimation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
A non‐iterative, finite element‐based inverse method for estimating surface heat flux histories on thermally conducting bodies is developed. The technique, which accommodates both linear and non‐linear problems, and which sequentially minimizes the least squares error norm between corresponding sets of measured and computed temperatures, takes advantage of the linearity between computed temperatures and the instantaneous surface heat flux distribution. Explicit minimization of the instantaneous error norm thus leads to a linear system, i.e. a matrix normal equation, in the current set of nodal surface fluxes. The technique is first validated against a simple analytical quenching model. Simulated low‐noise measurements, generated using the analytical model, lead to heat transfer coefficient estimates that are within 1% of actual values. Simulated high‐noise measurements lead to h estimates that oscillate about the low‐noise solution. Extensions of the present method, designed to smooth oscillatory solutions, and based on future time steps or regularization, are briefly described. The method's ability to resolve highly transient, early‐time heat transfer is also examined; it is found that time resolution decreases linearly with distance to the nearest subsurface measurement site. Once validated, the technique is used to investigate surface heat transfer during experimental quenching of cylinders. Comparison with an earlier inverse analysis of a similar experiment shows that the present method provides solutions that are fully consistent with the earlier results. Although the technique is illustrated using a simple one‐dimensional example, the method can be readily extended to multidimensional problems. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
The present paper is concerned with the numerical integration of non‐linear reaction–diffusion problems by means of discontinuous and continuous Galerkin methods. The first‐order semidiscrete initial value problem of calcium leaching of cementitious materials, based on a phenomenological dissolution model, an electrolyte diffusion model and the spatial p‐finite element discretization, is used as a highly non‐linear model problem. A p‐finite element method is used for the spatial discretization. In the context of discontinuous Galerkin methods the semidiscrete mass balance and the continuity of the primary variables are weakly formulated within time steps and between time steps, respectively. Continuous Galerkin methods are obtained by the strong enforcement of the continuity condition as special cases. The introduction of a natural time co‐ordinate allows for the application of standard higher order temporal shape functions of the p‐Lagrange type and the well‐known Gauss–Legendre quadrature of associated time integrals. It is shown, that arbitrary order accurate integration schemes can be developed within the framework of the proposed temporal p‐Galerkin methods. Selected benchmark analyses of calcium dissolution demonstrate the robustness of these methods with respect to pronounced changes of the reaction term and non‐smooth changes of Dirichlet boundary conditions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号