共查询到20条相似文献,搜索用时 15 毫秒
1.
For the preparation of high‐quality polymeric carbon nanocomposites, it is required that carbon nanotubes are fully compatible with matrix polymers. For this purpose, amino‐functionalized multiple‐walled carbon nanotubes (a‐MWNTs) were synthesized. The a‐MWNTs/polyimide nanocomposite films were prepared through in situ polymerization. According to the spectroscopic characterizations, the a‐MWNTs were homogeneously dispersed in the nanocomposite films as the acid‐functionalized MWNTs. The mechanical properties of the polyimide composite were also studied. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
2.
Ying Du Nantao Hu Hongwei Zhou Peng Li Peng Zhang Xiaogang Zhao Guodong Dang Chunhai Chen 《Polymer International》2009,58(7):832-837
BACKGROUND: Recently, much work has focused on the efficient dispersion of carbon nanotubes (CNTs) throughout a polymer matrix for mechanical and/or electrical matrices. However, CNTs used as enhancement inclusions in a high‐performance polymer matrix, especially in poly(aryl ether ketone) (PAEK), have rarely been reported. Therefore, multi‐walled carbon nanotube (MWNT)‐modified PAEK nanocomposites were synthesized by in situ polymerization of monomers of interest in the presence of pre‐treated MWNTs. RESULTS: This process enabled a uniform dispersion of MWNT bundles in the polymer matrix. The resultant MWNT/PAEK nanocomposite films were optically transparent with significant mechanical enhancement at a very low MWNT loading (0.5 wt%). CONCLUSION: These MWNT/polymer nanocomposites are potentially useful in a variety of aerospace and terrestrial applications, due to the combination of excellent properties of MWNTs with PAEK. Copyright © 2009 Society of Chemical Industry 相似文献
3.
Nantao Hu Hongwei Zhou Guodong Dang Chunhai Chen Jing Jing Wanjin Zhang 《Polymer International》2008,57(7):927-931
BACKGROUND: Recently, much work has focused on the efficient dispersion of carbon nanotubes (CNTs) throughout a polymer matrix for mechanical and/or electrical enhancement. However, there are still only few reports about gradient distribution of CNTs in polymer matrices. In the work reported here, CNTs embedded in a polymer film with a gradient distribution were successfully obtained and studied. RESULTS: For composite films with gradient distributions of CNTs, the upper surface behaves as an intrinsic insulator, while the lower one behaves as a semiconductor, or even as a conductor. It is also found that with an increase of 1 wt% CNTs, the resistance of the bottom surface decreases by 2–3 orders of magnitude, as compared with pure polyarylene ether nitrile; furthermore, when the proportion of CNTs increases up to 5 wt%, the resistance of the bottom surface shows only very little change. As a result, sufficient matrix conductivity of the bottom surface could be achieved at a lower filler concentration with CNTs in a gradient distribution. Meanwhile, the thermal stability, glass transition temperature and tensile properties of the matrix are maintained. CONCLUSION: There is considerable interest in such gradient composite films, which could be applied in the electrical engineering, electronics and aerospace fields, for their excellent mechanical properties, thermal stability and novel electrical properties. Copyright © 2008 Society of Chemical Industry 相似文献
4.
To improve the mechanical and surface properties of poly(etherurethane) (PEU), multi‐walled carbon nanotubes (MWCNTs) were surface grafted by 3,3,4,4, 5,5,6,6,7,7,8,8,8‐tridecafluoro‐1‐octanol (TDFOL) (MWCNT‐TDFOL) and used as reinforcing agent for PEU. Fourier‐transform infrared spectroscopy revealed the successful grafting of MWCNTs. PEU filled with MWCNT‐TDFOL could be well dispersed in tetrahydrofuran solution, and tensile stress–strain results and dynamic mechanical analysis showed a remarkable increase in mechanical properties of PEU by adding a small amount of MWCNT‐TDFOL. Contact angle testing displayed a limited improvement (just 9°) in the hydrophobicity of PEU surface by solution blending with MWCNT‐TDFOL. However, a large improvement of surface hydrophobicity was observed by directly depositing MWCNT‐TDFOL powder on PEU surface, and the water contact angle was increased from 80° to 138°. Our work demonstrated a new way for the modification of carbon nanotubes and for the property improvement of PEU. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
5.
Junjun Li Feng Yang Guiquan Guo Dong Yang Jiang Long Deliang Fu Jennifer Lu Changchun Wang 《Polymer International》2010,59(2):169-174
Carbon nanotubes (CNTs) are capable of traversing cellular membranes by endocytosis and are therefore promising materials for use in imaging and drug delivery. Unfortunately, pristine CNTs are practically insoluble and tend to accumulate inside cells, organs and tissues. To overcome the poor dispersibility and toxicity of pristine CNTs, hydrophilic functionalization of CNTs has been intensively investigated. Water‐soluble multi‐walled carbon nanotubes (MWCNTs) were prepared by in situ polymerization of acrylic acid in a poor solvent for poly(acrylic acid) (PAA). The solvent type influenced the grafted density and chain length of PAA. MWCNTs with a high grafted density of PAA (22 wt%) could be well dispersed in water, NaCl aqueous solution (0.9 wt%) and cell culture media. The in vitro cytotoxicity of these MWCNTs for endothelial cells is reasonably low even at high concentration of PAA‐g‐MWCNT (70 µg mL?1). The experimental results show that the biocompatibility of these MWCNTs is sufficient for biological applications. PAA‐g‐MWCNTs were successfully utilized for lymph node tracing. Experimental results suggest that PAA‐g‐MWCNTs have potential to be used as a vital staining dye, which may simplify the identification of lymph nodes during surgery. Copyright © 2009 Society of Chemical Industry 相似文献
6.
Yehai Yan Shaobei Yang Jian Cui Lothar Jakisch Petra Pötschke Brigitte Voit 《Polymer International》2011,60(10):1425-1433
Pyrene‐capped polystyrene (PyPS) with various molecular weights (M?n) was synthesized through the anionic polymerization method and characterized using UV, Fourier transform infrared and NMR spectroscopy and gel permeation chromatography. The polymers were then used for non‐covalent functionalization of pristine single‐walled carbon nanotubes (SWNTs). The functionalization efficiency was assessed by measuring the SWNT dispersibility in chloroform. In the presence of PyPS, the dispersibility can be as high as 372.5 mg L?1, and the dispersions containing more than 1.25 mg mL?1 of PyPS are very stable with no solid deposits observed after being centrifuged at 5000 rpm for 15 min. Once the PyPS concentration is converted to the molar concentration of the pyrene unit and the dispersibility redefined as nanotube content per molar pyrene unit, the renewed dispersibility is found to be independent of M?n of PyPS within the detected M?n range. For a certain PyPS polymer, however, both nanotube dispersibility and dispersion stability are strongly dependent on the PyPS concentration. These results suggest that PyPS may be used as an excellent dispersant for subsequent preparation of polystyrene/SWNT composites. Copyright © 2011 Society of Chemical Industry 相似文献
7.
8.
Ionomer covalent functionalization of single‐walled carbon nanotubes by radical polymerization of zirconium acrylate 下载免费PDF全文
Sellamuthu N. Jaisankar Donna J. Nelson Ravi Kumar Asit Baran Mandal 《American Institute of Chemical Engineers》2014,60(3):820-828
A facile and efficient covalent functionalization of single‐walled carbon nanotubes (SWCNTs) via peroxide‐mediated free radical covalent attachment and polymerization of zirconium acrylate is reported. The resulting covalently functionalized SWCNTs exhibit improved solubility in organic solvents. The covalently functionalized SWCNTs are characterized by cross polarization magic angle spinning 13C NMR, differential scanning calorimetry, thermogravimetric analysis, x‐ray diffraction, Raman, and infrared spectroscopy. Infrared spectroscopy reveals that carboxylate groups of covalently attached ionomers chelate with zirconium ions and the participating carboxylate groups may be from different ionomer chains leading to cross‐linking the chains. The SWCNT topology, ionic clustering, and π‐electron clouds were explored by transmission electron microscopy. © 2014 American Institute of Chemical Engineers AIChE J, 60: 820–828, 2014 相似文献
9.
Covalent functionalization of multi‐walled carbon nanotubes (MWNTs) with side‐chain azobenzene liquid crystalline poly{6‐[4‐(4‐methoxyphenylazo)phenoxy]hexyl methacrylate} (PMMAZO) was successfully achieved via atom transfer radical polymerization. The resultant samples were characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis and transmission electron microscopy. The results of differential scanning calorimetry and polarized optical microscopy show that the liquid crystalline behavior of PMMAZO‐functionalized carbon nanotubes (CNT‐PMMAZO) is similar to that of the PMMAZO homopolymer. The orientation of MWNTs and CNT‐PMMAZO in a PMMAZO matrix in the presence of an electric field was investigated. The results indicate that the orientation of MWNTs is dominated by the viscosity of the matrix, but the orientation of CNT‐PMMAZO is controlled by both the viscosity and the presence of a liquid crystalline phase ascribed to the compatibility between MWNTs and PMMAZO becoming better after covalent modification. Copyright © 2010 Society of Chemical Industry 相似文献
10.
Raushan Koizhaiganova Hee Jin Kim T. Vasudevan Sarkyt Kudaibergenov Mu Sang Lee 《应用聚合物科学杂志》2010,115(4):2448-2454
Poly(3‐alkylthiophene)s represent a family of conjugated polymers that are soluble and processable, but still retaining the good electrical conductivity of the insoluble parent polymer thiophene ring backbone. Poly(3‐hexylthiophene) (P3HT) is reported to be a best candidate in the family for solar cell applications. In situ polymerization of 3‐hexylthiophene monomer with double‐walled carbon nanotubes (DWCNTs) has been attempted with the aim of addressing two main issues, namely, the interfacial bonding and proper dispersion of the carbon nanotubes in the polymer matrix to get a high‐performing polymer/nanocomposite. Fourier transform infrared spectroscopy, Raman, and X‐ray diffraction studies indicate the physical wrapping of the polymer on the nanotubes in the absence of any ground‐state interaction between them. The ultraviolet–visible measurements also support this view. The photoluminescence quenching indicates the effectiveness of the interface in the formation of the donor–acceptor‐type composite. The impressive conductivity values encourage the utility of the composites as photovoltaic material. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
11.
Incorporation of carbon nanotubes (CNTs) in conducting polymer can lead to new composites with enhanced electrical and mechanical properties. However, the development of such composites has been hampered by the inability to disperse CNTs in polymer matrix due to the lack of chemical compatibility between polymers and CNTs. Covalent sidewall functionalization of carbon nanotube provides a feasible route to incorporate carbon nanotube in polymer. In this work, 4‐aminobenzene groups were grafted onto the surface of multi‐walled carbon nanotube (MWNT) via C? C covalent bond. Polyaniline (PANI)/MWNT composites were fabricated by electrochemical polymerization of aniline containing well‐dissolved functionalized MWNTs. The obtained composites can be used as catalyst supports for electrooxidation of formic acid. Cyclic voltammogram results show that platinum particles deposited in PANI/MWNT composite films exhibit higher electrocatalytic activity and better long‐term stability towards formic acid oxidation than that deposited in pure PANI films. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
12.
The influence of oxidized multi‐walled carbon nanotubes (o‐MWCNTs) on the curing kinetics of a novolac resin was studied by means of non‐isothermal differential scanning calorimetry. Regarding the kinetics issues, the high concentration of hydroxyl groups on the o‐MWCNTs slightly modified the curing reaction of the novolac resin, shifting the differential scanning calorimetry exothermic peak to higher temperatures. The effective activation energy of the curing reaction was calculated by the isoconversional Kissinger‐Akahira‐Sunose method and increased by the presence of o‐MWCNTs with respect to neat novolac. This change was attributed to the increase of the material viscosity. In addition, thermogravimetric analysis revealed that nanocomposites samples containing 0.4 and 1.0 wt% o‐MWCNTs presented increased char yield values, indicating an improvement of flame retardancy. 相似文献
13.
Poly(p‐phenylene benzobisoxazole)/multiwalled carbon nanotubes (PBO‐MWCNT) composites with different MWCNT compositions were prepared through in situ polymerization of PBO in the presence of carboxylated MWCNTs. The nanocomposite's structure, thermal and photophysical properties were investigated and compared with their blend counterparts (PBO/MWCNT) using Fourier transform infrared spectra, Raman spectra, Wide‐angle X‐ray diffraction, thermogravimetric analysis, UV‐vis absorption, and photoluminescence. The results showed that MWCNTs had a strong interaction with PBO through covalent bonding. The incorporation of MWCNTs increased the distance between two neighboring PBO chains and also improved the thermal resistance of PBO. The investigation of UV‐vis absorption and fluorescence emission spectra exhibited that in situ PBO‐MWCNT composites had a stronger absorbance and obvious trend of red‐shift compared with blend PBO/MWCNT composites for all compositions. This behavior can be attributed to the efficient energy transfer through forming conjugated bonding interactions in the PBO‐MWCNT composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
14.
A multi‐walled carbon nanotube (MWCNT)/cellulose composite was synthesized to improve the mechanical strength of regenerated cellulose film. N,N‐carbonyldiimidazole was mixed with functionalized MWCNTs and sonicated at 60 °C for 12 h. The resulting MWCNT‐imidazolide was mixed with cellulose solution, and reacted at various temperatures for various times. The occurrence of covalent bonds between MWCNTs and cellulose was investigated using Fourier transform infrared spectroscopy and Raman spectroscopy. According to mechanical tensile tests, Young's modulus of the MWCNT/cellulose composite was found to be 11.2 GPa, an increase of approximately 110% with respect to regenerated cellulose film. Copyright © 2010 Society of Chemical Industry 相似文献
15.
Xiaofeng Lu Danming Chao Jiani Zheng Jingyu Chen Wanjin Zhang Yen Wei 《Polymer International》2006,55(8):945-950
We describe the synthesis of methane sulfonic acid (MeSA)‐doped poly(diphenylamine) (PDPA) with carboxylic groups containing multi‐walled carbon nanotubes (c‐MWNTs) via in situ polymerization. Diphenylamine monomers were adsorbed on to the surface of c‐MWNTs and polymerized to form PDPA/c‐MWNT composites. SEM and TEM images indicated two different types of materials: the thinner fibrous phase and the larger globular phase. The individual fibrous phase had a diameter around 100–130 nm, which should be the carbon nanotubes (diameter 20–30 nm) coated with a PDPA layer. The structure of PDPA/c‐MWNT composites was characterized by FTIR, UV‐visible spectroscopy and X‐ray diffraction patterns. The electrical conductivities of PDPA/c‐MWNT composites were much higher than that of PDPA without c‐MWNTs. Copyright © 2006 Society of Chemical Industry 相似文献
16.
Toluene 2, 4‐diisocyanate (TDI) functionalized multiwalled carbon nanotubes (MWNTs‐NCO) were used to prepare monomer casting polyamide 6 (MCPA6)/MWNTs nanocomposites via in situ anionic ring‐opening polymerization (AROP). Isocyanate groups of MWNTs‐NCO could serve as AROP activators of ?‐caprolactam (CL) in the in situ polymerization. Fourier transform infrared (FTIR) showed that a graft copolymer of PA6 and MWNTs was formed in the in situ polymerization. MWNTs‐PA6 covalent bonds of the graft copolymer constituted a strong type of interfacial interaction in the nanocomposites and increased the compatibility of MWNTs and MCPA6 matrix. The nanocomposites were characterized for the morphology, mechanical, crystallization, and thermal properties through field emission transmission electron microscopy (FETEM), tensile testing, differential scanning calorimeter (DSC), and thermogravimetric analysis (TGA). FETEM analysis showed that MWNTs were homogeneously dispersed in MCPA6 matrix. The initial tensile strengths and tensile modulus of the nanocomposite with 1.5 wt % loading of MWNTs were enhanced by about 16 and 13%, respectively, compared with the corresponding values for neat MCPA6. DSC analysis indicated that the crystallization temperature of the nanocomposites was increased by 8°C by adding 1.5 wt % MWNTs compared with pure MCPA6. Besides, it was found that the thermal stability of MCPA6 was improved by the addition of the MWNTs. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
17.
Nanocomposites of blends of polymethylmethacrylate (PMMA) and poly(styrene‐co‐acrylonitrile) (SAN) with multi‐walled carbon nanotubes (MWCNTs) were prepared by melt mixing in a twin‐screw extruder. The dispersion state of MWCNTs in the matrix polymers was investigated using transmission electron microscopy. Interestingly enough, in most of the nanocomposites, the MWCNTs were observed to be mainly located at SAN domains, regardless of the SAN compositions in the PMMA/SAN blend and of the processing method. One possible reason for this morphology may be the π–π interactions between MWCNTs and the phenyl ring of SAN. The shift in G‐band peak observed in the Raman spectroscopy may be the indirect evidence proving these interactions. The percolation threshold for electrical conductivity of PMMA/SAN/MWCNT nanocomposites was observed to be around 1.5 wt %. Nanocomposites with PMMA‐rich composition showed higher electrical conductivity than SAN‐rich nanocomposites at a fixed MWCNT loading. The dielectric constant measurement also showed composition‐dependent behavior. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
18.
Xiaofeng Lu Jiani Zheng Danming Chao Jingyu Chen Wanjin Zhang Yen Wei 《应用聚合物科学杂志》2006,100(3):2356-2361
This study described the synthesis of hydrochloric acid (HCl)‐doped poly (N‐methylaniline) (PNMA) with carboxylic groups containing multi‐walled carbon nanotubes (c‐MWNTs) via in situ polymerization. Based on the π–π electron interaction between c‐MWNTs and the N‐methylaniline monomer and the hydrogen bond interaction between the carboxyl groups of c‐MWNTs and imine groups of N‐methylaniline monomers, N‐methylaniline molecules were adsorbed on the surface of c‐MWNTs and polymerized to form PNMA/c‐MWNT composites. Scanning electron microscopy images showed that both the thinner fibrous phase and the larger block phase could be observed. The individual fibrous phases had diameters from several tens to hundreds of nanometers, depending on the PNMA content. Transmission electron microscopy proved that PNMA/c‐MWNTs composite fibrous phases were core (c‐MWNT)‐shell (PNMA) tubular structures. The structure of PNMA/c‐MWNT composites was characterized by FTIR, UV–vis spectra, and X‐ray diffraction patterns. The electrical conductivities of PNMA/c‐MWNT composites were much higher than that of PNMA without c‐MWNTs. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2356–2361, 2006 相似文献
19.
Kwang‐Un Jeong Jee Young Lim Jong‐Young Lee Seong Lak Kang Changwoon Nah 《Polymer International》2010,59(1):100-106
Polymer nanocomposites reinforced with multi‐walled carbon nanotubes (MWCNTs) have been newly introduced for semiconducting layers of high‐voltage electrical power cables. Homogeneity of the MWCNT‐reinforced polymer nanocomposites was achieved by solution mixing, and their mechanical, thermal and electrical properties were investigated depending on the type of polymer. By changing the polymer matrix, the volume resistance of the MWCNT‐reinforced polymer nanocomposites could be varied by more than four orders of magnitude. Through systematic experiments and analysis, two possible factors affecting the volume resistance were found. One is the degree of crystallinity of the polymer used and the other is the change of MWCNT morphology under strain. By increasing the degree of crystallinity above a certain level, the volume resistance linearly increased. The MWCNTs embedded in the nanocomposites gradually protruded through the surface on stretching the sample and reversibly returned back to the original positions at a relatively small strain (below 20%). Based on the criteria of tensile properties and volume resistance, a poly[ethylene‐co‐(ethyl acrylate)]/MWCNT nanocomposite was selected as the best candidate for the semiconducting layers of high‐voltage electrical power cables. Copyright © 2009 Society of Chemical Industry 相似文献
20.
In a simple device, two kinds of zeolites were successfully used as synergistic additive to promote formation of the multi‐walled carbon nanotubes (MWNTs) from polypropylene (PP) via combustion. More importantly, this kind of process may potentially act as a new approach for recycling plastic wastes, because it could effectively transfer polyolefin wastes into valuable carbon materials. Experimental results demonstrated that the higher quality of MWNTs can be obtained from the mixture (PP/H‐Beta/Ni2O3) than that from the mixture (PP/H‐ZSM‐5/Ni2O3). At the same time, the yield of MWNTs from PP/H‐ZSM‐5/Ni2O3 system is much lower than that from PP/H‐Beta/Ni2O3 under the same condition. The reason for the different effects of both types of zeolites on the morphology and the yield of the MWNTs was analyzed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献