首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we present a direct meshless method of boundary integral equation (BIE), known as the boundary element‐free method (BEFM), for two‐dimensional (2D) elastodynamic problems that combines the BIE method for 2D elastodynamics in the Laplace‐transformed domain and the improved moving least‐squares (IMLS) approximation. The formulae for the BEFM for 2D elastodynamic problems are given, and the numerical procedures are also shown. The BEFM is a direct numerical method, in which the basic unknown quantities are the real solutions of the nodal variables, and the boundary conditions can be implemented directly and easily that leads to a greater computational precision. For the purpose of demonstration, some selected numerical examples are solved using the BEFM. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
This paper examines the interaction between coplanar square cracks by combining the moving least‐squares (MLS) approximation and the derived boundary integral equation (BIE). A new traction BIE involving only the Cauchy singular kernels is derived by applying integration by parts to the traditional boundary integral formulation. The new traction BIE can be directly applied to a crack surface and no displacement BIE is necessary because all crack boundary conditions (both upper and lower ones) are incorporated. A boundary element‐free method is then developed by combining the derived BIE and MLS approximation, in which the crack opening displacement is first expressed as the product of weight functions and the characteristic terms, and the unknown weight is approximated with the MLS approximation. The efficiency of the developed method is tested for isotropic and transversely isotropic media. The interaction between two and three coplanar square cracks in isotropic elastic body is numerically studied and the case of any number of coplanar square cracks is deduced and discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
This study develops an element‐free Galerkin method based on the moving least‐squares approximation to trace three‐dimensional crack propagation under complicated stress conditions. The crack surfaces are modelled by a collection of planar triangles that are added when cracks propagate. The visibility criterion is adopted to treat the screening effect of the cracks on the influenced domain of a Gaussian point. Cracks are assumed to propagate in the perpendicular planes at crack front points when the strain energy release rates reach the material fracture toughness. This method is unique in that it uses a nonlinear contact iterative algorithm to consider contributions of crack surface interaction to the global equilibrium equations, so that crack opening, sliding and closing under complicated stress states can be efficiently modelled. Two numerical examples of three‐dimensional quasi‐static crack propagation were modelled with satisfactory results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
In this study, we first discuss the moving least‐square approximation (MLS) method. In some cases, the MLS may form an ill‐conditioned system of equations so that the solution cannot be correctly obtained. Hence, in this paper, we propose an improved moving least‐square approximation (IMLS) method. In the IMLS method, the orthogonal function system with a weight function is used as the basis function. The IMLS has higher computational efficiency and precision than the MLS, and will not lead to an ill‐conditioned system of equations. Combining the boundary integral equation (BIE) method and the IMLS approximation method, a direct meshless BIE method, the boundary element‐free method (BEFM), for two‐dimensional elasticity is presented. Compared to other meshless BIE methods, BEFM is a direct numerical method in which the basic unknown quantity is the real solution of the nodal variables, and the boundary conditions can be applied easily; hence, it has higher computational precision. For demonstration purpose, selected numerical examples are given. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
This study developed an element‐free Galerkin method (EFGM) to simulate notched anisotropic plates containing stress singularities at the notch tip. Two‐dimensional theoretical complex displacement functions are first deduced into the moving least‐squares interpolation. The interpolation functions and their derivatives are then determined to calculate the nodal stiffness using the Galerkin method. In the numerical validation, an interface layer of the EFGM is used to combine the mesh between the traditional finite elements and the proposed singular notch EFGM. The H‐integral determined from finite element analyses with a very fine mesh is used to validate the numerical results of the proposed method. The comparisons indicate that the proposed method obtains more accurate results for the displacement, stress, and energy fields than those determined from the standard finite element method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper the meshless local boundary integral equation (LBIE) method for numerically solving the non‐linear two‐dimensional sine‐Gordon (SG) equation is developed. The method is based on the LBIE with moving least‐squares (MLS) approximation. For the MLS, nodal points spread over the analyzed domain are utilized to approximate the interior and boundary variables. The approximation functions are constructed entirely using a set of scattered nodes, and no element or connectivity of the nodes is needed for either the interpolation or the integration purposes. A time‐stepping method is employed to deal with the time derivative and a simple predictor–corrector scheme is performed to eliminate the non‐linearity. A brief discussion is outlined for numerical integrations in the proposed algorithm. Some examples involving line and ring solitons are demonstrated and the conservation of energy in undamped SG equation is investigated. The final numerical results confirm the ability of method to deal with the unsteady non‐linear problems in large domains. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
8.
A meshless procedure, based on boundary integral equations, is proposed to analyze elastoplastic problems. To cope with non‐linear problems, the usual boundary element method introduces domain discretization cells, often considered a ‘drawback’ of the method. Here, to get rid of the standard element and cell, i.e. boundary and domain discretization, the orthogonal moving least squares (also known as improved moving least squares) method is used. The algorithm adopted to solve these particular inelastic non‐linear problems is a well‐established, criterion‐independent implicit procedure, previously developed by the authors. Comparative results are presented at the end to illustrate the effectiveness of the proposed techniques. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, by combining the dimension splitting method and the improved complex variable element‐free Galerkin method, the dimension splitting and improved complex variable element‐free Galerkin (DS‐ICVEFG) method is presented for 3‐dimensional (3D) transient heat conduction problems. Using the dimension splitting method, a 3D transient heat conduction problem is translated into a series of 2‐dimensional ones, which can be solved with the improved complex variable element‐free Galerkin (ICVEFG) method. In the ICVEFG method for each 2‐dimensional problem, the improved complex variable moving least‐square approximation is used to obtain the shape functions, and the penalty method is used to apply the essential boundary conditions. Finite difference method is used in the 1‐dimensional direction, and the Galerkin weak form of 3D transient heat conduction problem is used to obtain the final discretized equations. Then, the DS‐ICVEFG method for 3D transient heat conduction problems is presented. Four numerical examples are given to show that the new method has higher computational precision and efficiency.  相似文献   

10.
In this paper, an adaptive analysis of crack propagation based on the error estimation by the element‐free Galerkin (EFG) method is presented. The adaptivity analysis in quasi‐static crack propagation is achieved by adding and/or removing the nodes along the background integration cells, those are refined or recovered according to the estimated errors. These errors are obtained basically by calculating the difference between the values of the projected stresses and original EFG stresses. To evaluate the performance of the proposed adaptive procedure, the crack propagation behaviour is investigated for several examples. The results of these examples show the efficiency and accuracy of the proposed scheme in crack propagation analysis. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
The standard finite element method (FEM) is unreliable to compute approximate solutions of the Helmholtz equation for high wave numbers due to the dispersion, unless highly refined meshes are used, leading to unacceptable resolution times. The paper presents an application of the element‐free Galerkin method (EFG) and focuses on the dispersion analysis in one dimension. It shows that, if the basis contains the solution of the homogenized Helmholtz equation, it is possible to eliminate the dispersion in a very natural way while it is not the case for the finite element methods. For the general case, it also shows that it is possible to choose the parameters of the method in order to minimize the dispersion. Finally, theoretical developments are validated by numerical experiments showing that, for the same distribution of nodes, the element‐free Galerkin method solution is much more accurate than the finite element one. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents a boundary element analysis of linear elastic fracture mechanics in three‐dimensional cracks of anisotropic solids. The method is a single‐domain based, thus it can model the solids with multiple interacting cracks or damage. In addition, the method can apply the fracture analysis in both bounded and unbounded anisotropic media and the stress intensity factors (SIFs) can be deduced directly from the boundary element solutions. The present boundary element formulation is based on a pair of boundary integral equations, namely, the displacement and traction boundary integral equations. While the former is collocated exclusively on the uncracked boundary, the latter is discretized only on one side of the crack surface. The displacement and/or traction are used as unknown variables on the uncracked boundary and the relative crack opening displacement (COD) (i.e. displacement discontinuity, or dislocation) is treated as a unknown quantity on the crack surface. This formulation possesses the advantages of both the traditional displacement boundary element method (BEM) and the displacement discontinuity (or dislocation) method, and thus eliminates the deficiency associated with the BEMs in modelling fracture behaviour of the solids. Special crack‐front elements are introduced to capture the crack‐tip behaviour. Numerical examples of stress intensity factors (SIFs) calculation are given for transversely isotropic orthotropic and anisotropic solids. For a penny‐shaped or a square‐shaped crack located in the plane of isotropy, the SIFs obtained with the present formulation are in very good agreement with existing closed‐form solutions and numerical results. For the crack not aligned with the plane of isotropy or in an anisotropic solid under remote pure tension, mixed mode fracture behavior occurs due to the material anisotropy and SIFs strongly depend on material anisotropy. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, the material constant sensitivity boundary integral equation is presented, and its numerical solution proposed, based on boundary element techniques. The formulation deals with plane problems with general rectilinear anisotropy. Expressions for the computation of sensitivities for displacements, tractions, strains and stresses are derived, both for boundary and interior points. The sensitivities can be computed with respect to the bulk material properties or to the properties of part of the domain (inclusions, coatings, etc.). To assess the accuracy of the proposed approach, the computed results are compared to analytical ones derived from exact solutions obtained by complex potential theory, when possible, or finite difference derivatives otherwise. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
The current work presents an improved immersed boundary method based on the ideas proposed by Vanella and Balaras (M. Vanella, E. Balaras, A moving‐least‐squares reconstruction for embedded‐boundary formulations, J. Comput. Phys. 228 (2009) 6617–6628). In the method, an improved moving‐least‐squares approximation is employed to build the transfer functions between the Lagrangian points and discrete Eulerian grid points. The main advantage of the improved method is that there is no need to obtain the inverse matrix, which effectively eliminates numerical instabilities caused by matrix inversion and reduces the computational cost significantly. Several different flow problems (Taylor‐Green decaying vortices, flows past a stationary circular cylinder and a sphere, and the sedimentation of a free‐falling sphere in viscous fluid) are simulated to validate the accuracy and efficiency of the method proposed in the present paper. The simulation results show good agreement with previous numerical and experimental results, indicating that the improved immersed boundary method is efficient and reliable in dealing with the fluid–solid interaction problems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
In this work we propose a method which combines the element‐free Galerkin (EFG) with an extended partition of unity finite element method (PUFEM), that is able to enforce, in some limiting sense, the essential boundary conditions as done in the finite element method (FEM). The proposed extended PUFEM is based on the moving least square approximation (MLSA) and is capable of overcoming singularity problems, in the global shape functions, resulting from the consideration of linear and higher order base functions. With the objective of avoiding the presence of singular points, the extended PUFEM considers an extension of the support of the classical PUFE weight function. Since the extended PUFEM is closely related to the EFG method there is no need for special approximation functions with complex implementation procedures, and no use of the penalty and/or multiplier method is required in order to approximately impose the essential boundary condition. Thus, a relatively simple procedure is needed to combine both methods. In order to attest the performance of the method we consider the solution of an analytical elastic problem and also some coupled elastoplastic‐damage problems. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
A new efficient meshfree method is presented in which the first‐order least‐squares method is employed instead of the Galerkin's method. In the meshfree methods based on the Galerkin formulation, the source of many difficulties is in the numerical integration. The current method, in this respect, has different characteristics and is expected to remove some of the integration‐related problems. It is demonstrated through numerical examples that the present formulation is highly robust to integration errors. Therefore, numerical integration can be performed with great ease and effectiveness using very simple algorithms. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, we present a procedure to estimate the error in elliptic equations using the element‐free Galerkin (EFG) method, whose evaluation is computationally simple and can be readily implemented in existing EFG codes. The estimation of the error works very well in all numerical examples for 2‐D potential problems that are presented here, for regular and irregular clouds of points. Moreover, it was demonstrated that this method is very simple in terms of economy and gives a good performance. The results show that the error in EFG approximation may be estimated via the error estimator described in this paper. The quality of the estimation of the error is demonstrated by numerical examples. The implemented procedure of error approximation allows the global energy norm error to be estimated and also gives a good evaluation of local errors. It can, thus, be combined with a full adaptive process of refinement or, more simply, provide guidance for redesign of cloud of points. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
Based on the full‐space Green's functions, a three‐dimensional time‐harmonic boundary element method is presented for the scattering of elastic waves in a triclinic full space. The boundary integral equations for incident, scattered and total wave fields are given. An efficient numerical method is proposed to calculate the free terms for any geometry. The discretization of the boundary integral equation is achieved by using a linear triangular element. Applications are discussed for scattering of elastic waves by a spherical cavity in a 3D triclinic medium. The method has been tested by comparing the numerical results with the existing analytical solutions for an isotropic problem. The results show that, in addition to the frequency of the incident waves, the scattered waves strongly depend on the anisotropy of the media. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
Stress‐point integration provides significant reductions in the computational effort of mesh‐free Galerkin methods by using fewer integration points, and thus facilitates the use of mesh‐free methods in applications where full integration would be prohibitively expensive. The influence of stress‐point integration on the convergence and stability properties of mesh‐free methods is studied. It is shown by numerical examples that for regular nodal arrangements, good rates of convergence can be achieved. For non‐uniform nodal arrangements, stress‐point integration is associated with a mild instability which is manifested by small oscillations. Addition of stabilization improves the rates of convergence significantly. The stability properties are investigated by an eigenvalue study of the Laplace operator. It is found that the eigenvalues of the stress‐point quadrature models are between those of full integration and nodal integration. Stabilized stress‐point integration is proposed in order to improve convergence and stability properties. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
A hypersingular time‐domain boundary element method (BEM) for transient elastodynamic crack analysis in two‐dimensional (2D), homogeneous, anisotropic, and linear elastic solids is presented in this paper. Stationary cracks in both infinite and finite anisotropic solids under impact loading are investigated. On the external boundary of the cracked solid the classical displacement boundary integral equations (BIEs) are used, while the hypersingular traction BIEs are applied to the crack‐faces. The temporal discretization is performed by a collocation method, while a Galerkin method is implemented for the spatial discretization. Both temporal and spatial integrations are carried out analytically. Special analytical techniques are developed to directly compute strongly singular and hypersingular integrals. Only the line integrals over an unit circle arising in the elastodynamic fundamental solutions need to be computed numerically by standard Gaussian quadrature. An explicit time‐stepping scheme is obtained to compute the unknown boundary data including the crack‐opening‐displacements (CODs). Special crack‐tip elements are adopted to ensure a direct and an accurate computation of the elastodynamic stress intensity factors from the CODs. Several numerical examples are given to show the accuracy and the efficiency of the present hypersingular time‐domain BEM. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号