首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(trimethylene terephthalate) (PTT) nano composites were synthesized by in situ polymerization at high temperature with two thermally stable organoclays: 1,2‐dimethylhexadecylimidazolium‐montmorillonite (IMD‐MMT) and dodecyltriphenyl phosphonium‐MMT (C12PPh‐MMT). PTT hybrid fibers with various organoclay contents were melt‐spun at various draw ratios (DRs) to produce monofilaments. The thermomechanical properties and morphologies of the PTT hybrid fibers were characterized using differential scanning calorimetry, thermogravimetric analysis, wide‐angle X‐ray diffraction, electron microscopy, and mechanical tensile properties analysis. The nanostructure of the hybrid fibers was observed by both scanning and transmission electron microscopy, which showed that the clay layers were well dispersed into the matrix polymer, although some clusters or agglomerated particles were also detected. Unlike the hybrids containing IMD‐MMT, the clay layers of the C12PPh‐MMT hybrid fiber were more dispersed into the matrix polymer. The thermal stability and tensile properties of the hybrid fibers increased with increasing clay content for DR = 1. However, as DR increased from 1 to 9 the ultimate strength and initial modulus of the hybrid fibers with IMD‐MMT increased slightly whereas those of C12PPh‐MMT hybrid fibers decreased slightly. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4535–4545, 2006  相似文献   

2.
A series of nanocomposites of poly(ethylene terephthalate) (PET) with the organoclay dodecyltriphenylphosphonium‐mica (C12PPh‐mica) were synthesized with the in situ polymerization method. PET hybrid fibers with various organoclay concentrations were melt‐spun at various draw ratios (DRs) to produce monofilaments. The thermomechanical properties and morphologies of the PET hybrid fibers were characterized with differential scanning calorimetry, thermogravimetric analysis, wide‐angle X‐ray diffraction, electron microscopy, and universal tensile analysis. The organoclay was intercalated in the polymer matrix at all magnification levels, and some of the agglomerated organoclay layers were greater than 50 nm thick. The thermal stabilities and initial tensile moduli of the hybrid fibers increased with an increasing clay content for DR = 1. For DR = 1, the ultimate tensile strengths of the PET hybrid fibers increased with the addition of clay up to a critical clay loading and then decreased above that critical concentration. However, the tensile mechanical properties of the hybrid fibers did not improve with increasing DR. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2009–2016, 2005  相似文献   

3.
Nanocomposites of poly(butylene terephthalate) (PBT) with the organoclay C12PPh‐MMT were prepared using in situ intercalation polymerization. Hybrids with various organoclay contents were processed for fiber spinning to examine their thermal behavior, tensile mechanical properties, and morphologies for various draw ratios (DRs). The thermal properties (Tg, Tm, and TDi) of the hybrid fibers were found to be better than those of pure PBT fibers and were unchanged by variation of the organoclay loading up to 2 wt %. However, these thermal properties remained unchanged for DRs ranging from 1 to 18. Most clay layers were dispersed homogeneously in the matrix polymer, although some clusters were also detected. The tensile properties of the hybrid fibers increased gradually with increasing C12PPh‐MMT content at DR = 1. However, the ultimate strengths and initial moduli of the hybrid fibers decreased markedly with increasing DR. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1247–1254, 2006  相似文献   

4.
Nanocomposites of poly(ethylene terephthalate) (PET) with C12PPh-MMT as an organoclay were synthesized by using the in situ interlayer polymerization approach. The PET nanocomposites were melt-spun at different organoclay contents and different draw ratios to produce monofilaments. The thermo-mechanical properties and the morphologies of the PET nanocomposites were examined by using a differential scanning calorimeter, a thermogravimetric analyzer, a wide angle X-ray diffactometer, scanning and transmission electron microscopes, and a universal tensile machine. Some of the clay particles were well dispersed in the PET matrix, and some of them were agglomerated at a size level of greater than approximately 10 nm. The thermal stability and the tensile mechanical properties of the PET hybrid fibers increased with increasing clay content at a DR=1. However, the values of the ultimate tensile strength and the initial modulus of the hybrid fibers decreased markedly with increasing DR from 1 to 16.  相似文献   

5.
Polyimide (PI)/organoclay hybrid films were prepared by the solution intercalation method, using dodecyltriphenylphosphonium‐mica (C12PPh‐Mica) as the organoclay. The variations with organoclay content of the thermomechanical properties, morphology, and optical transparency of the hybrids were examined for concentrations from 0 to 1.0 wt %. For low clay contents (≤ 0.5 wt %), the clay particles are better dispersed in the matrix polymer, without the formation of large agglomerates of particles, than they are for high clay contents. However, agglomerated structures form and become denser in the PI matrix for clay contents ≥ 0.75 wt %. This is in agreement with the observed trends in the thermomechanical properties and the optical transparency, which worsen drastically when the clay content of the C12PPh‐Mica/PI hybrids reaches 0.75 wt %. However, when the amount of organoclay in the hybrid is 0.75 wt %, the initial modulus of the hybrid film is at its maximum value. The PI hybrid films were found to exhibit excellent optical transparencies and to be almost colorless. It was found, however, that the transparency decreases slightly with increases in the organoclay content because of agglomeration of the clay particles. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
Poly(ethylene terephthalate) (PET) nanocomposites with a newly synthesized organomica (C16BIMD‐Mica) were obtained by using the in situ interlayer polycondensation of ethylene glycol with dimethylterephthalic acid. The PET hybrids were melt‐spun to produce monofilaments with various organoclay contents and draw ratios. The thermomechanical properties and morphologies of the PET hybrid fibers were determined using differential scanning calorimetry, thermogravimetric analysis, wide angle X‐ray diffraction, electron microscopy (SEM and TEM), and a universal tensile machine. The XRD analyses and TEM micrographs showed that the levels of exfoliation and intercalation could be controlled by varying the clay content. The thermomechanical properties of the PET hybrid fibers were found to be better than those of pure PET fibers. POLYM. ENG. SCI., 47:1820–1826, 2007. © 2007 Society of Plastics Engineers  相似文献   

7.
The mechanical properties and morphologies of polyblends of lyocell with three different fillers are compared. Poly(vinyl alcohol) (PVA), poly(vinyl alcohol‐co‐ethylene) (EVOH), and poly(acrylic acid‐co‐maleic acid) (PAM) were used as fillers in blends with lyocell produced through solution blending. The variations of their properties with polymer matrix filler content are discussed. The ultimate tensile strength of the PVA/lyocell blend is highest for a blend lyocell content of 30 wt %, and decreases as the lyocell content is increased up to 40 wt %. The ultimate tensile strengths of the EVOH/lyocell and PAM/lyocell blends are highest for a lyocell loading of 20 wt %, and decrease with the increasing filler content. The variations in the initial moduli of the blends with filler content are similar. Of the three blend systems, the blends with PVA exhibit the best tensile properties. Lyocell/organoclay hybrid films were prepared by the solution intercalation method, using dodecyltriphenylphosphonium–Mica (C12PPh‐ Mica) as the organoclay. The variation of the mechanical tensile properties of the hybrids with the matrix polymer organoclay content was examined. These properties were found to be optimal for an organoclay content of up to 5 wt %. Even polymers with low organoclay contents exhibited better mechanical properties than pure lyocell. The addition of organoclay to lyocell to produce nanocomposite films was found to be less effective in improving its ultimate tensile strength than blending lyocell with the polymers. However, the initial moduli of the nanocomposites were found to be higher than those of the polyblend films. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

8.
A poly(amic acid) was prepared by the reaction of 3,3′‐dihydroxybenzidine and pyromellitic dianhydride in N,N‐dimethylacetamide. Hexadecylamine was used as an organophilic alkylamine in organoclay. Cast films were obtained from blend solutions of the precursor polymer and the organoclay. The cast film was heat treated at different temperatures to create polyimide (PI) hybrid films. We set out to clarify the intercalation of PI chains to hexadecylamine–montmorillonite (C16–MMT) and to improve thermal and tensile properties and the gas barrier. It was found that the addition of only a small amount of organoclay was enough to improve both the thermal and the mechanical properties of PIs. Maximum enhancement in the ultimate tensile strength for PI hybrids was observed for the blends containing 4% C16–MMT. The initial modulus monotonically increased with further increases in C16–MMT content. Water vapor permeability was decreased with increasing clay loading from 1 to 8 wt %. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2294–2301, 2002  相似文献   

9.
Jin-Hae Chang  Sung Jong Kim 《Polymer》2004,45(15):5171-5181
A series of poly(trimethylene terephthalate) (PTT) nanocomposites, containing an organically modified montmorillonite (C12PPh-MMT), were prepared by in situ intercalation polymerization of dimethyl terephthalate (DMT) and 1,3-propanediol (PDO). The PTT nanocomposites were melt-spun at different organoclay contents and different draw ratios (DRs) to produce monofilaments. The nanocomposites were characterized by X-ray diffraction, electron microscopy, universal tensile testing, differential scanning calorimetry and thermogravimetric analysis. Some of the clay particles appeared well dispersed within the PTT matrix, while others were found to agglomerate with a size greater than 10 nm. The addition of a small amount of C12PPh-MMT was sufficient to improve the thermo-mechanical properties of the PTT hybrid fibers. Both the thermal stability and the tensile strength increased with increasing clay content at DR=1. As the DR was increased from 1 to 9, the ultimate tensile strength of the hybrid fibers decreased, while the initial modulus remained constant.  相似文献   

10.
Summary Two polyester nanocomposites were synthesized, one with poly(ethylene terephthalate) (PET) and the other with poly(trimethylene terephthalate) (PTT), by using organoclay. The in-situ interlayer polymerization method was used to disperse the organoclay in polyesters at different organoclay contents and at different draw ratios to produce monofilaments. The thermal stability and tensile mechanical properties increased with increasing organoclay content at a DR=1 . However, the values of the tensile mechanical properties of the hybrid fibers decreased with increasing DR. The reinforcing effects of the organoclay of the PET hybrid fibers were higher than those of the PTT hybrid fibers.  相似文献   

11.
Nanocomposites of three different polyesters with dodecyltriphenyl-phosphonium-montmorillonite (C12PPh-MMT) organoclay are compared with respect to their thermal properties, mechanical properties, and morphologies. Poly(butylene terephthalate) (PBT), poly(ethylene terephthalate) (PET), and poly(trimethylene terephthalate) (PTT) were used as matrix polymers in the fabrication of polyester nanocomposite fibers. The variations in their properties with respect to both the organoclay content in the polymer matrix and the draw ratio (DR) are discussed. Transmission electron microscopy (TEM) micrographs show that some of the clay layers are dispersed homogeneously within the polymer matrix on the nanoscale, although some clay particles are agglomerated. The results additionally show that the addition of only a small amount of organoclay is enough to improve the thermal stabilities and mechanical properties of the polyester nanocomposite fibers.  相似文献   

12.
Poly(vinyl alcohol) (PVA)/clay nanocomposites were synthesized using the solution intercalation method. Na ion‐exchanged clays [Na+–saponite (SPT) and Na+–montmorillonite (MMT)] and alkyl ammonium ion‐exchanged clays (C12–MMT and C12OOH–MMT) were used for the PVA nanocomposites. From the morphological studies, the Na ion‐exchanged clay is more easily dispersed in a PVA matrix than is the alkyl ammonium ion‐exchanged clay. Attempts were also made to improve both the thermal stabilities and the tensile properties of PVA/clay nanocomposite films, and it was found that the addition of only a small amount of clay was sufficient for that purpose. Both the ultimate tensile strength and the initial modulus for the nanocomposites increased gradually with clay loading up to 8 wt %. In C12OOH–MMT, the maximum enhancement of the ultimate tensile strength and the initial modulus for the nanocomposites was observed for blends containing 6 wt % organoclay. Na ion‐exchanged clays have higher tensile strengths than those of organic alkyl‐exchanged clays in PVA nanocomposites films. On the other hand, organic alkyl‐exchanged clays have initial moduli that are better than those of Na ion‐exchanged clays. Overall, the content of clay particles in the polymer matrix affect both the thermal stability and the tensile properties of the polymer/clay nanocomposites. However, a change in thermal stability with clay was not significant. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3208–3214, 2003  相似文献   

13.
Nanocomposite polyurethane (PU)–organoclay materials have been synthesized via in‐situ polymerization. The organoclay is first prepared by intercalation of tyramine into montmorillonite (MMT)‐clay through ion exchange process. The syntheses of polyurethane–organoclay hybrid films containing different ratios of clay were carried out by swelling the organoclay into diol and diamine followed by addition of diisocyanate and then cured. The nanocomposites with dispersed and exfoliated structure of MMT were obtained as evidenced by X‐ray diffraction and scanning electron microscope. X‐ray diffraction showed that there is no peak corresponding to d001 spacing in organoclay with the ratios up to 20 wt%. SEM images confirmed the dispersion of nanometer silicate layers in the polyurethane matrix. Also, it was found that the presence of organoclay leads to improvement in the mechanical properties. The tensile strength was increased with increasing the organoclay contents to 20 wt% by 221% in comparision to the PU with 0% organoclay. POLYM. COMPOS. 28:108–115, 2007. © 2007 Society of Plastics Engineers  相似文献   

14.
Poly(amic acid) nanocomposites were synthesized from a dimethylacetamide (DMAc) solution with two organophilic montmorillonites (organo‐MMTs). It was then heated at various temperatures under vacuum, yielding 15–20 um thick films of polyimide/organo‐MMT hybrid with different clay contents (1–8 wt%). Dodecy‐lamine (C12‐) and hexadecylamine (C16‐) were used as aliphatic alkylamines in organo‐MMT. The ultimate strength monotonically increased with increasing clay content in the polymer matrix. Maximum enhancement in the initial modulus was observed for the blends containing 2 wt% clay with two kinds of organo‐clays, and values did not alter significantly with further increases in clay content. Additions of only 2 wt% C12‐ and C16‐MMT to the polyimide were shown to cause 94%‐95% reduction in oxygen gas permeability. This is caused by the barrier properties of the clay layers dispersed in the composite. In general, C16‐MMT is more effective than C12‐MMT in increasing both the tensile property and the gas barrier in a polyimide matrix. Intercalations of the polymer chains in clay were examined through wide‐angle X‐ray diffraction (XRD) and electron microscopies (SEM and TEM).  相似文献   

15.
Intercalated nanocomposites with poly(butylene terephthalate) (PBT) incorporated between the montmorillonite layers were synthesized from dimethyl terephthalate and 1,4-butane diol by using an in situ interlayer polymerization. The PBT nanocomposites were melt-spun at different organoclay contents to produce monofilaments. The samples were characterized by using wide angle X-ray diffraction, electron microscopy, thermal analysis, and tensile testing. The extent of the clay layer in the PBT was confirmed by using X-ray diffraction and electron microscopy, and the clay layer was found to be highly dispersed on a nanometer scale. The addition of only a small amount of organoclay was enough to improve the thermo-mechanical properties of the PBT hybrid fibers. The hybrids were extruded with various draw ratios (DRs) to examine the tensile mechanical property of the fibers. At DR=1, the ultimate tensile strength of the hybrid fibers increased with the addition of clay up to a critical content and then decreased. However, the initial modulus monotonically increased with increasing amount of organoclay in the PBT matrix. When the DR was increased from 1 to 6, for example, the strength and the initial modulus values of the hybrids containing 3 wt% organoclay decreased linearly.  相似文献   

16.
Summary A series of poly(ethylene terephthalate) (PET) nanocomposites containing organically-modified mica (HB-Mica) were prepared by in-situ interlayer polymerization of dimethyl terephthalate and ethylene glycol. The PET nanocomposites, which contained organoclay loadings of 0 to 2 wt %, were melt-spun to produce monofilaments with various draw ratios. Some of the clay particles appeared well dispersed within the PET matrix, while others were found to form agglomerates with sizes greater than 20 nm. The addition of a small amount of organoclay was sufficient to improve the thermo-mechanical properties of the PET hybrid fibers. Both the thermal stability and the mechanical tensile properties increased with increasing clay content for draw ratios of 1–16.  相似文献   

17.
Polyimide (PI)/clay hybrids were synthesized using the in situ solution intercalation method via poly(amic acid). The Na ion‐exchanged clays Na+‐saponite (SPT), Na+‐mica (Mica), and Na+‐montmorillonite (MMT) were used for the intercalation of PI polymer chains. Our dispersion results show that pristine SPT is more easily dispersed in a PI matrix than MMT or Mica. PI nanocomposites were prepared with various SPT contents to examine the variations with SPT content in the range 0–1 wt% of the thermomechanical properties, morphology, and optical transparency of the nanocomposites. The PI films have excellent optical transparencies, and are almost colorless. However, the optical transparency of the PI hybrid films decreases slightly with increases in the clay content. We also examined the relationship between the properties and clay content of the PI hybrid films using wide‐angle X‐ray diffraction (XRD) measurements, electronic microscopy (SEM and TEM), and universal tensile machine (UTM). The color intensities of the PI films were evaluated with a spectrophotometer. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

18.
Summary: Hydrogenated acrylonitrile butadiene rubber (HNBR) was melt compounded with montmorillonite (MMT) and organophilic modified MMTs prior to sulfur curing. In contrast to the micro‐composite formation resulting from the compounding of the HNBR and pristine MMT, the modified MMTs (i.e., octadecylamine: MMT‐ODA, octadecyltrimethylamine: MMT‐ODTMA, methyltallow‐bis(2‐hydroxyethyl) quaternary ammonium: MMT‐MTH intercalants) produced nanocomposites. It was found that the organoclay with primary amine intercalant (cf. MMT‐ODA) gave confined structures along with the exfoliated/intercalated structures. This was traced to its reactivity with the curatives. By contrast, the organoclays containing less reactive quaternary ammonium compounds (cf. MMT‐ODTMA, MMT‐MTH) were exfoliated and intercalated based on X‐ray diffraction (XRD) and transmission electron microscopy (TEM) results. The hydroxyl functional groups of the MMT‐MTH supported the clay dispersion. The better adhesion between MMT‐MTH and HNBR was explained by hydrogen bonding between the hydroxyl groups of the intercalant and the acrylonitrile group of the HNBR matrix. This HNBR/MMT‐MTH nanocomposite showed the best mechanical properties as verified by tensile mechanical tests and dynamic mechanical thermal analysis (DMTA). The high tensile strength along with the high elongation at break for the rubber nanocomposites were attributed to the ability of the ‘clay network’ to dissipate the input energy upon uniaxial loading.

Scheme of failure development in rubber/organoclay mixes with poor (a) and good (b) dispersion of the clay layers.  相似文献   


19.
Biobased nanocomposites and composite fibers were prepared from organosolv lignin/organoclay mixtures by mechanical mixing and subsequent melt intercalation. Two organically‐modified montmorillonite (MMT) clays with different ammonium cations were used. The effect of organoclay varying from 1 to 10 wt % on the mechanical and thermal properties of the nanocomposites was studied. Thermal analysis revealed an increased in Tg for the nanocomposites as compared with the original organosolv lignin. For both organoclays, lignin intercalation into the silicate layers was observed using X‐ray diffraction (XRD). The intercalated hybrids exhibited a substantial increase in tensile strength and melt processability. In the case of organoclay Cloisite 30B, X‐ray analysis indicates the possibility of complete exfoliation at 1 wt % organoclay loading. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Two series of poly(trimethylene terephthalate) (PTT) nanocomposites, containing an organically modified montmorillonite (MMT) clay (1,2‐aminododecanoic acid (ADA)–intercalated MMT) were prepared via melt compounding and in situ polymerization methods using dimethyl terephthalate (DMT) and 1,3‐propanediol (PDO). The effect of different methods of preparation and varying organoclay contents (1−5 wt%) on the structural, morphological, thermal, and mechanical properties were investigated. The results of wide‐angle X‐ray diffraction (WAXD) and transmission electron microscope (TEM) suggested the possible existence of intercalation morphology between ADA‐MMT and the PTT matrix obtained from melt compounding, and mostly exfoliation state from in situ polymerization depending on the amount of organoclay. From DSC studies, in melt compounding case, the addition of ADA‐MMT in PTT increases melt‐crystallization (Tcm) peak temperature by 14−15°C irrespective of the clay content. However, the melting temperature (Tm) of pristine PTT remains unchanged with increasing clay content. In the case of in situ polymerization, the Tcm and Tm peaks are shifted towards lower temperature with increasing clay content. Dynamic mechanical thermal analysis (DMTA) studies on melt compounded samples revealed a marginal lowering of glass transition temperature (Tg) irrespective of clay content, and a noticeable decrease in Tg with increasing clay content for in situ polymerized samples. The PTT/ADA‐MMT nanocomposites via melt compounding showed higher initial modulus and yield stress, and lower strain at break compared with in situ polymerization with increasing clay content. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号