首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of syndiotactic polystyrene (sPS) catalyzed with Cp*Ti(OBz)3/MAO/TIBA and toluene as the solvent and the effects of polymerization temperature and the external addition of TIBA on polymerization behavior were investigated. The study revealed that catalytic activity increased with polymerization temperature. The greatest activity, 619 kg sPS mol?1 Ti h?1, was exhibited up to 90°C. TIBA also improved catalytic activity. The molecular weight of the polymer obtained decreased with polymerization temperature and the amount of TIBA. The structure and properties of syndiotactic polystyrene were characterized by 13C‐NMR, FTIR, DSC, and GPC methods. It was confirmed that the sPS obtained featured all‐trans planar zigzag conformation and higher syndiotacticity, molecular weight, and melting point. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 501–505, 2007  相似文献   

2.
Summary Polystyrene-block-polycarbonate-block-polystyrene was synthesized by atom transfer radical polymerization of styrene using polycarbonate having two 2-bromoisobutyryloxy end groups as the macroinitiator, which was prepared by condensation polymerization of bisphenol A with triphosgene in the presence of chain-stopper, 2-(4-hydroxyphenyl)-2-(4-(2-bromoisobutyryloxy)phenyl)propane. While polycarbonate-graft-polystyrene was synthesized by atom transfer radical polymerization of styrene using polycarbonate having 2-bromoisobutyryloxy side groups as the macroinitiator, which was prepared by condensation of bisphenol and l,l-bis(4-hydroxyphenyl)- 1 -(4-(2-bromoisobutyryloxy)phenyl)ethane with triphosgene. The molecular weights of polystyrene block or graft chains increased linearly with monomer conversion, and their polydispersities were low throughout the blocking or grafting polymerization process. Received: 25 June 2002/Revised version: 23 October 2002/ Accepted: 25 November 2002 Correspondence to Zhifeng Fu  相似文献   

3.
The basic method for synthesizing syndiotactic polystyrene‐g‐polybutadiene graft copolymers was investigated. First, the syndiotactic polystyrene copolymer, poly(styrene‐co‐4‐methylstyrene), was prepared by the copolymerization of styrene and 4‐methylstyrene monomer with a trichloro(pentamethyl cyclopentadienyl) titanium(IV)/modified methylaluminoxane system as a metallocene catalyst at 50°C. Then, the polymerization proceeded in an argon atmosphere at the ambient pressure, and after purification by extraction, the copolymer structure was confirmed with 1H‐NMR. Lastly, the copolymer was grafted with polybutadiene (a ready‐made commercialized unsaturated elastomer) by anionic grafting reactions with a metallation reagent. In this step, poly(styrene‐co‐4‐methylstyrene) was deprotonated at the methyl group of 4‐methylstyrene by butyl lithium and further reacted with polybutadiene to graft polybutadiene onto the deprotonated methyl of the poly(styrene‐co‐4‐methylstyrene) backbone. After purification of the graft copolymer by Soxhlet extraction, the grafting reaction copolymer structure was confirmed with 1H‐NMR. These graft copolymers showed high melting temperatures (240–250°C) and were different from normal anionic styrene–butadiene copolymers because of the presence of crystalline syndiotactic polystyrene segments. Usually, highly syndiotactic polystyrene has a glass‐transition temperature of 100°C and behaves like a glassy polymer (possessing brittle mechanical properties) at room temperature. Thus, the graft copolymer can be used as a compatibilizer in syndiotactic polystyrene blends to modify the mechanical properties to compensate for the glassy properties of pure syndiotactic polystyrene at room temperature. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
Hyung Woo Lee  Kyu Yong Choi 《Polymer》2005,46(14):5032-5039
The physical transitions and nascent morphology of syndiotactic polystyrene (sPS) synthesized over heterogeneized embedded Cp*Ti(OMe)3/MAO catalyst in n-heptane slurry polymerization have been investigated. The homogeneous metallocene catalyst is heterogenized by embedding active titanium sites into an sPS prepolymer phase. At low styrene concentrations, the reaction mixture is well-dispersed slurry of sPS particles and at high styrene concentrations, swollen sPS particles form aggregates that become a wet powder phase. For a wide range of styrene concentrations, no global gelation occurs with the embedded catalyst. Complex nascent morphology of sPS polymers is also presented. Scanning electron microscopic images show that spherical as well as irregular-shaped microparticles, films, and fibers are formed and that particle generation and growth mechanisms are different from that of heterogeneously catalyzed α-olefin polymerization processes.  相似文献   

5.
Well defined block‐graft copolymers of cyclohexanone‐formaldehyde resin (CFR) and methylmethacrylate (MMA) were prepared via atom transfer radical polymerization (ATRP). In the first step, cyclohexanone formaldehyde resin (CFR) containing hydroxyl groups were modified with 2‐bromopropionyl bromide. Resulting multifunctional macroinitiator was used in the ATRP of MMA using copper bromide (CuBr) and N,N,N′,N″,N″‐pentamethyl‐diethylenetriamine (PMDETA) as catalyst system at 90°C. The chemical composition and structure of the copolymers were characterized by nuclear magnetic resonance (1H‐NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and molecular weight measurement. Molecular weight distributions of the CFR graft copolymers were measured by gel permeation chromatography (GPC). Mn values up to 19,000 associated with narrow molecular weight distributions (polydispersity index (PDI) < 1.6) were obtained with conversions up to 49%. Coating properties of synthesized graft copolymers such as adhesion and gloss values were measured. They exhibited good adhesion properties on Plexiglas substrate. The thermal behaviors of all polymers were conducted using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
A new grafted syndiotactic polystyrene (g‐sPS), to be used as a compatibilizer for syndiotactic polystyrene (sPS)/polyadimide 66 blends, was prepared by the melting graft copolymerization of sPS and monomers composed of itaconic acid and dibutyl maleate with dicumyl peroxide as an initiator. The resulting g‐sPS possessed a side‐chain structure identified by IR spectra, and the results of mechanical testing show that a good impact strength and tensile strength were obtained for g‐sPS at a 7.16‐phr addition of monomer with a 3:1 proportion of dibutyl maleate and itaconic acid. Differential scanning calorimetry and scanning electron microscopy analysis indicated that the g‐sPS maintained a high glass‐transition temperature and a crystalline structure. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1659–1666, 2005  相似文献   

7.
Atom transfer radical polymerization (ATRP) was employed to prepare graft copolymers having poly(MBr)‐alt‐poly(St) copolymer as backbone and poly(methyl methacrylate) (PMMA) as branches to obtain heat resistant graft copolymers. The macroinitiator was prepared by copolymerization of bromine functionalized maleimide (MBr) with styrene (St). The polymerization of MMA was initiated by poly(MBr)‐alt‐poly(St) carrying bromine groups as macroinitiator in the presence of copper bromide (CuBr) and bipyridine (bpy) at 110°C. Both macroinitiator and graft copolymers were characterized by 1H NMR, GPC, DSC, and TGA. The ATRP graft copolymerization was supported by an increase in the molecular weight (MW) of the graft copolymers as compared to that of the macroinitiator and also by their monomodal MW distribution. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

8.
Commercial brominated poly(isobutylene‐co‐isoprene) (BIIR) rubber has been directly used for the initiation of atom transfer radical polymerization (ATRP) by utilizing the allylic bromine atoms on the macromolecular chains of BIIR. The graft copolymerization of methyl methacrylate (MMA) from the backbone of BIIR which was used as a macroinitiator was carried out in xylene at 85 °C with CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as a catalytic complex. The polymerization conditions were optimized by adjusting the catalyst and monomer concentration to reach a higher monomer conversion and meanwhile suppress macroscopic gelation during the polymerization process. This copolymerization followed a first‐order kinetic behavior with respect to the monomer concentration, and the number‐average molecular weight of the grafted poly(methyl methacrylate) (PMMA) increased with reaction time. The resultant BIIR‐graft‐PMMA copolymers showed phase separation morphology as characterized by atomic force microscopy, and the presence of PMMA phase increased the polarity of the BIIR copolymers. This study demonstrated the feasibility of using commercial BIIR polymer directly as a macromolecular initiator for ATRP reactions, which opens more possibilities for BIIR modifications for wider applications. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43408.  相似文献   

9.
Autopolymerization of styrene‐N‐butylmaleimide mixtures at 125 or 140°C in the presence of a stable nitroxyl radical [2,2,6,6‐tetramethylpiperidin‐1‐yloxyl (TEMPO)] was found to proceed in a pseudoliving manner. Unimolecular initiators, which were originated by trapping self‐generated radical species with TEMPO, took part in the process. Under the studied experimental conditions, the TEMPO‐controlled autopolymerization with a varying comonomer ratio provided virtually alternating copolymers of narrow molecular weight distributions. The molecular weights of the copolymers increased with conversions. The obtained styrene‐N‐butylmaleimide copolymers containing TEMPO end groups were used to initiate the polymerization of styrene. The polymerization yielded poly(styrene‐coN‐butylmaleimide)‐polystyrene block copolymers with various polystyrene chain lengths and narrow molecular weight distributions. The compositions, molecular weights, and molecular weight distributions of the synthesized block copolymers and the initial poly(styrene‐coN‐butylmaleimide) precursors were evaluated using nitrogen analysis, gel permeation chromatography, and 1H‐ and 13C‐NMR spectroscopy. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2378–2385, 1999  相似文献   

10.
BACKGROUND: In a number of studies it has been shown that 2,2,6,6‐tetramethylpiperidinooxy (TEMPO)‐mediated polymerization of acrylates is not facile. Therefore, the object of the study reported here was to prepare poly[styrene‐block‐(tert‐butyl acrylate)] (PS‐b‐PtBA) block copolymers using 4‐oxo‐TEMPO‐capped polystyrene macroinitiator as an initiator, in the presence of small amounts of N,N‐dimethylformamide (DMF). The kinetic analysis and the effect of DMF on the reaction mechanism are also discussed. RESULTS: PS‐b‐PtBA block copolymer was prepared through polymerization of tert‐butyl acrylate (tBA) initiated by 4‐oxo‐TEMPO‐capped polystyrene macroinitiator at 135 °C. The polymerization rate of tBA could be increased by adding a small amount of DMF, and the number average molecular weight of the PtBA block in PS‐b‐PtBA reached 10 000 g mol?1 with narrow polydispersity. The activation rate constant kact?tBA of alkoxyamine increased and the recombination rate constant krec?tBA decreased with increasing DMF concentration. CONCLUSION: DMF was shown to be a rate‐enhancing additive for the polymerization of tBA using a 4‐oxo‐TEMPO‐capped polystyrene macroinitiator. From the kinetic analysis, it was concluded that the improvement of polymerization with the addition of DMF was due to an increase in kact?tBA and a decrease in krec?tBA. Copyright © 2008 Society of Chemical Industry  相似文献   

11.
Three novel iniferter reagents were synthesized and used as initiators for the polymerizations of methyl methacrylate (MMA) and styrene (St) in the presence of copper(I) bromide and N,N,N′,N″,N″‐pentamethyldiethylenetriamine at 90 and 115°C, respectively. All the polymerizations were well controlled, with a linear increase in the number‐average molecular weights during increased monomer conversions and relatively narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight ≤ 1.36) throughout the polymerization processes. The polymerization rate of MMA was faster in bulk than that in solution and was influenced by the different polarities of the solvents. A slight change in the chemical structures of the initiators had no obvious effect on the polymerization rates of MMA and St. The initiator efficiency toward MMA was lower than that toward St. The results of 1H‐NMR, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrum analysis, and chain‐extension experiments demonstrated that well‐defined poly(methyl methacrylate) and polystyrene bearing photolabile groups could be obtained via atom transfer radical polymerization (ATRP) with three iniferter reagents as initiators. The polymerization mechanism for this novel initiation system was a common ATRP process. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

12.
In this work, well‐defined homopolymers of methyl methacrylate (PMMA) and styrene (PSt) were prepared via single‐electron‐transfer living radical polymerization using CCl4 as initiator and Fe(0)/N, N, N′,N′‐tetramethyl‐1,2‐ethanediamine as catalyst. The polymerization was conducted at 25 °C in N,N‐dimethylformamide in the presence of air. It proceeded in a ‘living’ manner, as indicated by the first‐order kinetics behavior, and the linear increase of the number‐average molecular weight (Mn, GPC) with conversion was close to the theoretical Mn, theory. Solvent and additives have a profound effect on the polymerization. In addition, the PMMA and PSt obtained remained of low dispersity. The chain‐end functionality of the obtained homopolymer of PMMA was characterized by proton nuclear magnetic resonance. A block copolymer of P(MMA‐block‐St) was achieved by using the obtained PMMA as macroinitiator. The living characteristics were further demonstrated by chain extension experiments. Copyright © 2012 Society of Chemical Industry  相似文献   

13.
Homogeneous solutions of syndiotactic polystyrene (sPS) in diglycidylether of bisphenol A (DGEBA), containing 2.5, 5 and 7.5 wt % of thermoplastic with or without 0.5 and 1 wt % of poly(styrene‐b‐ethylene oxide) (PS‐b‐PEO) block copolymer, were polymerized using a stoichiometric amount of an aromatic amine hardener, 4,4′‐methylene bis (3‐chloro‐2,6‐diethylaniline) (MCDEA). The dynamic‐mechanical properties and morphological changes of sPS‐(DGEBA/MCDEA) compatibilized with different amount of PS‐b‐PEO have been investigated in this paper. The addition of the block copolymer produced significant changes in the morphologies generated. The size of the dispersed spherical sPS spherulites does not change significantly, but less spherulites of sPS appeared upon network formation in the systems with compatibilizer, what means that addition of compatibilizer in this system delayed crystallization of sPS in sPS‐(DGEBA/MCDEA) systems and change phase separation mechanism from crystallization‐induced phase separation (CIPS) and reaction‐induced phase separation (RIPS) almost only to RIPS. Moreover, PS‐b‐PEO with higher molecular weight of PS block seems to be a more effective compatibilizer than one with lower molecular weight of PS block. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 479–488, 2006  相似文献   

14.
2‐(1‐Bromoethyl)‐anthraquinone (BEAQ) was successfully used as an initiator in the atom transfer radical polymerization of styrene with CuBr/N,N,N′,N′,N″‐pentamethyldiethylenetriamine as the catalyst at 110°C. The polymerizations were well controlled with a linear increase in the molecular weights (Mn's) of the polymers with monomer conversion and relatively low polydispersities (1.1 < weight‐average molecular weight (Mw)/Mn < 1.5) throughout the poly merizations. The resultant polystyrene thus possessed one chromophore moiety (2‐ethyl‐anthraquinone) at the α end and one bromine atom at the ω end, both from the initiator BEAQ. The intensity of UV absorptions of the resultant polymers decreased with increasing molecular weights of the polymers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2081–2085, 2006  相似文献   

15.
Well‐defined hairy and crosslinked fluorescent nanoparticles with diameters in the range 70–220 nm were obtained from simultaneous copper‐catalyzed alkyne–azide cycloaddition (CuAAC) and atom transfer radical emulsion polymerization (ATREP) of a mixture of styrene, divinylbenzene, 4‐vinylbenzylazide and 7‐propinyloxycoumarin (Cr), using bromide‐terminated poly(ethylene glycol) (PEG) as macroinitiator, Tween‐20 as emulsifier, copper(I) bromide as catalyst and pentamethyldiethylenetriamine as ligand. The generation of biocompatible PEG brushes and the introduction of fluorescent functionalities as well as crosslinking of nanoparticles were realized in one step. In order to verify that functionalization and propagation of polymer chains could be realized in a controlled manner by one‐pot simultaneous ATREP and CuAAC, linear block copolymers of PEG and polystyrene (PS) with partially clicked pendent Cr groups (PEG‐b‐(PS‐c‐Cr)) were synthesized. All prepared PEG‐b‐(PS‐c‐Cr) copolymers had a controlled molecular weight and defined molecular structure. The hairy fluorescent nanoparticles exhibit a low cytotoxicity and could find applications in cell labeling. © 2013 Society of Chemical Industry  相似文献   

16.
α‐(Methacrylyoxylethyloxycarbonylmethyl)‐ω‐(N,N‐diethyldithiocarbamyl)polystyrene macromonomers with different molecular weights were prepared by radical polymerization of styrene (St) using β‐methacryloxylethyl 2‐N,N‐diethyldithiocarbamylacetate (MAEDCA) as a polymerizable photoiniferter in toluene under ultraviolet light. The polymerization of St with MAEDCA carried out by a “living” process; that is, both the yield and the molecular weight of the resultant polymers increased with increasing of reaction time, and the resultant polymer was a macromonomer, for example, α‐(methacrylyoxylethyloxycarbonylmethyl)‐ω‐(N,N‐diethyldithiocarbamyl)polystyrene, designated as PSt‐macromonomer. The molecular weight of the PSt‐macromonomer depended on the concentrations of the polymerizable photoiniferter and St, as well as the conversion of St. The PSt‐macromonomer can copolymerize with MMA initiated by AIBN at 65°C to form a graft copolymer (PMMA‐graft‐PSt) with PSt branches randomly distributed along the PMMA backbone. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1350–1356, 2000  相似文献   

17.
The radical homopolymerization of styrene or copolymerization of styrene (S) with N-butyl maleimide (I) initiated by tetraethylthiuram disulfide was used to prepare macroinitiators having thiyl end groups. The S–I copolymers from the feeds containing 30–70 mol % I showed approximately alternating composition. The rate of copolymerization and molecular weights decreased with increasing maleimide derivative concentration in the feed; homopolymerization of I alone did not proceed. The macroinitiators served for synthesis of further S–I copolymers. Using polystyrene macroinitiator and the S–I copolymer with thiyl end groups in the polymerization of S–I mixture and styrene, respectively, the copolymers containing blocks of both polystyrene and alternating S–I copolymer were obtained. The copolymerization of S–I mixture initiated with the S–I copolymer bearing thiyl end groups led to the extension of macroinitiator chains by the blocks of alternating copolymer. The presence of the blocks in the polymer products was corroborated using elemental analysis, size exclusion chromatography, and differential scanning calorimetry. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67: 755–762, 1998  相似文献   

18.
This investigation reports the preparation of styrene–α‐olefinic random copolymers, using 1‐octene as an α‐olefin, via atom transfer radical polymerization. Atom transfer radical copolymerization of styrene with 1‐octene was successfully carried out using phenylethyl bromide as initiator and CuBr as catalyst in combination with N, N, N′, N″, N″‐pentamethyldiethylenetriamine as ligand. The copolymers had controlled molecular weight, narrow dispersity and well‐defined end groups with significant 1‐octene incorporation in the polymer. Incorporation of 1‐octene in the copolymers was confirmed using 1H NMR and matrix‐assisted laser desorption ionization time‐of‐flight mass spectroscopy. An increase in 1‐octene content in the monomer feed led to an increase in the level of incorporation of the α‐olefin in the copolymer. An increase in the concentration of 1‐octene led to a decrease in the rate of polymerization and an increase in dispersity. The glass transition temperature of the copolymer gradually decreased as the incorporation of 1‐octene increased. Copyright © 2011 Society of Chemical Industry  相似文献   

19.
A well-dispersed multiwall carbon nanotube (MWCNT)/syndiotactic polystyrene (sPS) composite was prepared by simple in-situ polymerization of styrene using pentamethylcyclopentadienyltitanium(IV) trimethoxide (Cp*Ti(OMe)3) attached to the shortened and functionalized MWCNT (f-MWCNT). The attachment of Cp*Ti(OMe)3 to the f-MWCNT was confirmed by thermogravimetric analysis, X-ray photoelectron spectroscopy, Fourier transformed infrared spectroscopy, and energy dispersive X-ray spectroscopy. Cp*Ti(OMe)3 attached to pristine MWCNT in the presence of methylaluminoxane (MAO) did not produce PS, whereas Cp*Ti(OMe)3 attached to f-MWCNT showed a high catalytic activity for the syndiospecific polymerization of styrene under the same polymerization conditions. Obtained sPS showed a narrow molecular weight distribution (PDI ≈ 2), a high SI value (≥90%), and a high melting point (≈272 °C). Scanning electron microscopy and transmission electron microscopy images showed that MWCNT strands were well dispersed in the MWCNT/sPS composite. Such composites had greatly improved thermal stability compared to normal sPS polymers.  相似文献   

20.
AB diblock copolymers were prepared by use of poly(tert‐butyl (meth)acrylate) (PtBA/PtBMA) as monofunctional macroinitiator in atom transfer radical polymerization of various (meth)acrylates (methyl, butyl) in the presence of the CuBr/N, N, N′, N′, N″‐pentamethyldiethylenetriamine catalyst system. Then using the diblock copolymer as macroinitiator with a bromine atom at the chain end, ABC and ABA triblock copolymers containing at least one PtBA or PtBMA segment were synthesized via polymerization of the selected (meth)acrylic monomer. Gel permeation chromatography was applied to determine molecular weights and polydispersity indices. The latter, for block copolymers prepared without deactivator addition, were in the range 1.2‐1.6 with a high degree of polymerization (150‐500). The chemical compositions of the block copolymers were characterized with 1H nuclear magnetic resonance. The kind of combined segments and their lengths influenced the glass transition temperature (Tg) determined by differential scanning calorimetry. Copyright © 2012 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号