首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, a series of poly(N‐isopropylacrylamide) (PNIPAM)‐based hydrogels were prepared under microwave irradiation using poly(ethylene oxide)‐600 (PEO‐600) as reaction medium and microwave‐absorbing agent as well as pore‐forming agent. All of the temperature measurements, gel fractions, and FTIR analyses proved that the PNIPAM hydrogels were successfully synthesized. Within 1 min, the PNIPAM hydrogel with a 98% yield was obtained under microwave irradiation. The PNIPAM hydrogels thus prepared exhibited controllable properties such as pore size, equilibrium swelling ratios, and swelling/deswelling rates when changing the feed weight ratios of monomer (N‐isopropylacrylamide, NIPAM) to PEO‐600. These properties are well adapted to the different requirements for their potential application in many fields such as biomedicine. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:4177–4184, 2006  相似文献   

2.
Thermally sensitive polymers change their properties with a change in environmental temperature in a predictable and pronounced way. These changes can be expected in drug delivery systems, solute separation, enzyme immobilization, energy‐transducer processes, and photosensitive materials. We have demonstrated a thermal‐sensitive switch module, which is capable of converting thermal into mechanical energy. We employed this module in the control of liquid transfer. The thermally sensitive switch was prepared by crosslinking poly(N‐isopropylacrylamide) (PNIPAAm) gel inside the pores of a sponge to generate the composite PNIPAAm/sponge gel. This gel, contained in a polypropylene tube, was inserted into a thermoelectric module equipped with a fine temperature controller. As the water flux through the composite gel changes from 0 to 6.6 × 102 L m−2 h, with a temperature change from 23 to 40°C, we can reversibly turn on and off the thermally sensitive switch. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75:1735–1739, 2000  相似文献   

3.
Interpenetrating polymer network (IPN) hydrogels based on poly(vinyl alcohol) and poly(N‐isopropylacrylamide) were prepared by the sequential‐IPN method. The IPN hydrogels were analyzed for sorption behavior of water at 35°C and at a relative humidity of 95% using a dynamic vapor sorption system, and water diffusion coefficients were calculated. Differential scanning calorimetry was used for the quantitative determination of the amounts of freezing and nonfreezing water. Free water contents in the IPN hydrogel of IPN1, IPN2, and IPN3 were 45.8, 37.9 and 33.1% in pure water, respectively. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2041–2045, 2003  相似文献   

4.
Thermosensitive hydrogels were prepared by free radical polymerization in aqueous solution from N‐isopropylacrylamide (NIPA) monomer and N,N‐methylenebis(acrylamide) (MBAAm) crosslinker. The swelling equilibrium of the hydrogels in deionized water was investigated as a function of temperature and MBAAm content. The results indicated that the swelling behavior and temperature sensitivity of the hydrogels were affected by the amount of MBAAm content. The average molecular mass between crosslinks and polymer–solvent interaction parameter (χ) of the hydrogels were determined from equilibrium swelling values. The swelling variations were explained according to swelling theory based on the hydrogel chemical structure. The swelling equilibrium of the hydrogels was also investigated as a function of temperature in aqueous solutions of the anionic surfactant sodium dodecyl sulfate (SDS) and the cationic surfactant dodecyltrimethylammonium bromide (DTAB). In deionized water, the hydrogels showed a discontinuous volume phase transition at 32°C. In SDS and DTAB solutions, the equilibrium swelling ratio and the volume phase transition temperature (lower critical solution temperature) of the hydrogels increased, which is ascribed to the conversion of nonionic PNIPA hydrogel into polyelectrolyte hydrogels because of binding of surfactant molecules through the hydrophobic interaction. Additionally, the amount of free SDS and DTAB ions was measured at different temperatures by a conductometric method; it was found that the electric conductivity of the PNIPA–surfactant systems depended strongly on both the type and concentration of surfactant solutions. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1756–1762, 2006  相似文献   

5.
Ethanol‐responsive smart membranes with different microstructures are prepared from blends of polyethersulfone (PES) and poly(N‐isopropylacrylamide) (PNIPAM) nanogels by immersion precipitation phase inversion method in a convenient and controllable manner. The introduction of PNIPAM nanogels forms the microporous structures on the surface of the top skin layer and on the pore walls of the finger‐like porous sublayer of membranes. The ethanol‐responsive characteristics of the proposed PES composite membranes are systematically investigated. With increasing ethanol concentration in the range from 0 to 15 wt %, the trans‐membrane flux of ethanol solution increases. The microstructures and the resultant ethanol‐responsive characteristics of the composite membranes can be regulated by the content of PNIPAM nanogels blended in the membranes. The more the content of PNIPAM nanogels blended in the membranes, the more the number of the submicron pores is, and thus the better the ethanol‐responsive characteristics of the composite membranes. The proposed ethanol‐responsive smart membranes are expected to be combined with the traditional pervaporation membranes as a smart vavle to achieve continuous and highly efficient ethanol production during the biological fermentation. The preparation technique and results in this study provide valuable guidance for further design and the industrial‐scale fabrication of novel composite membranes for application in ethanol separation systems. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41032.  相似文献   

6.
Poly(N‐isopropylacrylamide‐co‐sodium acrylate) gels with N,N‐methylene bisacrylamde (BIS) as crosslinker were prepared by free radical polymerization method at the temperature of 35°C, which was just around the lower critical solution temperature (LSCT) of the hydrogels. The gels synthesized at 35°C demonstrated strong swellability and fast responseability when compared with the gels synthesized at the temperature of 0 and 18°C (below the LCST) and 50 and 80°C (above the LSCT). The response rate and swelling behavior of poly(N‐isopropylacrylamide‐co‐sodium acrylate) gels was investigated and characterized by the temperature‐dependent swelling ratio and swelling and deswelling kinetics. The swelling behavior of the gels indicated that the synthesis temperature was the main factor when the swellability concerned and also had effect on the responseability of the resulting hydrogels. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
Temperature‐sensitive interpenetrating polymer network (IPN) hydrogels based on soy protein and poly(N‐isopropylacrylamide) were successfully prepared. The structure and properties were systematically characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry and thermogravimetric analysis, and the swelling and deswelling behavior was also investigated. It was found that the hydrogels had good miscibility, thermal stability and temperature sensitivity, and the lower critical solution temperature was ca 32 °C. Changing the content of soy protein or crosslinker could be used to control the swelling behavior, water retention and network structure of the IPN hydrogels. The results show that the novel IPN hydrogels may be of potential interest in drug delivery systems. Copyright © 2011 Society of Chemical Industry  相似文献   

8.
In the present study, the temperature sensitive PVDF‐g‐NIPAAm HFM was prepared by grafting N‐isopropylacrylamide (NIPAAm) on poly(vinylidene fluoride) (PVDF) hollow fiber membrane (HFM) using a novel approach, alkaline treatment method. The structures of PVDF‐g‐NIPAAm HFM were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. The effects of alkaline treatment time and grafting yield on the mechanical properties of PVDF HFM were measured and analyzed. In addition, the temperature sensitive behavior of PVDF‐g‐NIPAAm HFM and the effect of grafting yield on the temperature sensitive behavior were investigated by the flux of pure water and the rejection of ovalbumin. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 833–837, 2006  相似文献   

9.
The composite‐crosslinked poly(N‐isopropylacrylamide) (PNIPAAm) gels were prepared by grafting N‐isopropylacrylamide on the surface of glass plates modified by organosilanes. The glass plates as the substrate increase the mechanical strength of composite PNIPAAm gel layers. We investigated the effects of a series of organosilanes and the reaction time of organosilanes on surface characteristics, such as the static contact angle and the layer thickness. We discuss the equilibrium swelling ratio and the water release behavior of the gel layers in terms of the crosslinking density of the composite gels. The composite gels exhibit not only the characteristics of remarkable water release but also the reversed hydrophilic–hydrophobic surface properties. The gel layers are hydrophilic under 25°C and change to hydrophobic above 40°C. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1–11, 1999  相似文献   

10.
Hydrogels with environment‐sensitive properties have great potential applications in the controlled drug release field. In this paper, hybrid hydrogels with semi‐interpenetrating polymer networks (semi‐IPNs), composed of poly(N‐isopropylacrylamide) (PNIPAM) as the thermo‐sensitive component by in situ polymerization and self‐assembled collagen nanofibrils as the pH‐sensitive framework, were prepared for controlled release of methyl violet as a model drug. From Fourier transform infrared spectroscopy and scanning electron microscopy, it was indicated that the crosslinking of PNIPAM in the presence of collagen nanofibrils led to the formation of semi‐IPNs with homogeneous porous structure, and the semi‐IPNs showed improved thermal stability and elastic properties compared with the native collagen as determined using differential scanning calorimetry and rheologic measurements. Furthermore, the semi‐IPNs possessed swelling behaviors quite different from those of neat collagen or PNIPAM hydrogel under various pH values and temperatures. Correspondingly, as expected, the drug release behavior in vitro for semi‐IPNs performed variously compared with that for single‐component semi‐IPNs, which revealed the tunable performance of semi‐IPNs for release ability. Finally the thermo‐ and pH‐responsive mechanism of the semi‐IPNs was illuminated to provide guidance for the application of the thermo‐ and pH‐sensitive collagen‐based hybrid hydrogels in controlled drug delivery systems. © 2019 Society of Chemical Industry  相似文献   

11.
BACKGROUND: Thermo‐responsive copolymers with racemate or single enantiomer groups are attracting increasing attention due to their fascinating functional properties and potential applications. However, there is a lack of systematic information about the lower critical solution temperature (LCST) of poly(N‐isopropylacrylamide)‐based thermo‐responsive chiral recognition systems. In this study, a series of thermo‐responsive chiral recognition copolymers, poly[(N‐isopropylacrylamide)‐co‐(N‐(S)‐sec‐butylacrylamide)] (PN‐S‐B) and poly[(N‐isopropylacrylamide)‐co‐(N‐(R,S)‐sec‐butylacrylamide)] (PN‐R,S‐B), with different molar compositions, were prepared. The effects of heating and cooling processes, optical activity and amount of chiral recognition groups in the copolymers on the LCSTs of the prepared copolymers were systematically studied. RESULTS: LCST hysteresis phenomena are found in the phase transition processes of PN‐S‐B and PN‐R,S‐B copolymers in a heating and cooling cycle. The LCSTs of PN‐S‐B and PN‐R,S‐B during the heating process are higher than those during the cooling process. With similar molar ratios of N‐isopropylacrylamide groups in the copolymers, the LCST of the copolymer containing a single enantiomer (PN‐S‐B) is lower than that of the copolymer containing racemate (PN‐R,S‐B) due to the steric structural difference. The LCSTs of PN‐R,S‐B copolymers are in inverse proportion to the molar contents of the hydrophobic R,S‐B moieties in these copolymers. CONCLUSION: The results provide valuable guidance for designing and fabricating thermo‐responsive chiral recognition systems with desired LCSTs. Copyright © 2008 Society of Chemical Industry  相似文献   

12.
Active control of flow over object surfaces achieved by means of mechanical and/or electrical methods has recently been studied. However, there has been no report on actively switching the surface drag of an object by chemical modification of the object's surface. Poly(N‐isopropylacrylamide) (PNIPA) was grafted onto the surface of an aluminium (Al) substrate via (A) surface‐initiated atom transfer radical polymerization and (B) radical polymerization with an azo‐group surface initiator. The grafting density was 0.19 and 0.15 chains nm?2, respectively. The water contact angle of the PNIPA‐grafted Al surface reversibly changed between 55° and 82° for (A) and between 42° and 65° for (B) at temperatures of 25 and 40 °C, which was ascribed to the temperature‐responsive, hydrophilic–hydrophobic switching of the grafted PNIPA surface. The PNIPA grafting was applied on the surface of an ogive‐shaped Al model. The normalized dropping speed of the model in water increased 1.1 times at 42 °C in comparison to that at 22 °C. Switching of the surface drag of PNIPA‐grafted Al in water was demonstrated on the basis of the hydrophilicity and hydrophobicity of the grafted Al surface, the switching occurring with a change in temperature. Copyright © 2010 Society of Chemical Industry  相似文献   

13.
Poly(N‐isopropylacrylamide) (PNIPAAm)/poly(ethylene oxide) (PEO) semi‐interpenetrating polymer networks (semi‐IPNs) synthesized by radical polymerization of N‐isopropylacrylamide (NIPAAm) in the presence of PEO. The thermal characterizations of the semi‐IPNs were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dielectric analysis (DEA). The melting temperature (Tm) of semi‐IPNs appeared at around 60°C using DSC. DEA was employed to ascertain the glass transition temperature (Tg) and determine the activation energy (Ea) of semi‐IPNs. From the results of DEA, semi‐IPNs exhibited one Tg indicating the presence of phase separation in the semi‐IPN, and Tgs of semi‐IPNs were observed with increasing PNIPAAm content. The thermal decomposition of semi‐IPNa was investigated using TGA and appeared at around 370°C. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3922–3927, 2003  相似文献   

14.
As a microcapsule with temperature sensitivity, poly(methacrylic acid)–polyethylenimine complex capsules containing N‐isopropylacrylamide units were designed. Two kinds of copolymers of methacrylic acid and N‐isopropylacrylamide were synthesized by free‐radical copolymerization. Partly crosslinked poly(methacrylic acid)–polyethylenimine complex capsules containing the methacrylic acid–N‐isopropylacrylamide copolymers were prepared at 40 or 25°C. The permeation of phenylethylene glycol through the capsule membranes was investigated. Permeability of the capsules prepared at 25°C increased monotonously with increasing temperature from 10 to 50°C. Permeability of the capsules prepared at 40°C also increased with increasing temperature up to 25°C but decreased above 30°C. Also, the degree of swelling of the membranes prepared at 40°C decreased above 30°C. Differential scanning calorimetry measurement showed that N‐isopropylacrylamide units underwent more efficient transition in the capsule membranes prepared at 40°C than in the membranes prepared at 25°C. The capsule membranes prepared at 40°C might have domains in which N‐isopropylacrylamide units are concentrated, whereas these units should distribute uniformly in the capsule membranes made at 25°C. Such a difference in distribution of N‐isopropylacrylamide units might result in the different permeation property of the capsule membranes. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2703–2710, 2000  相似文献   

15.
Interpenetrating polymer networks (IPNs) composed of poly(vinyl alcohol) (PVA) and poly(N‐isopropylacrylamide) (PNIPAAm) were prepared by the sequential‐IPN method. The thermal characterization of the IPNs was investigated using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dielectric analysis (DEA). Depression of the melting temperature (Tm) of the PVA segment in IPNs was observed with increasing PNIPAAm content using DSC. DEA was employed to ascertain the glass‐transition temperature (Tg) of IPNs. From the result of DEA, IPNs exhibited two Tg values, indicating the presence of phase separation in the IPNs. The thermal decomposition of IPNs was investigated using TGA and appeared at near 200°C. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 881–885, 2003  相似文献   

16.
Temperature‐sensitive poly(N‐isopropylacrylamide) hydrogels were successfully synthesized by using poly(ethylene oxide) as the interpenetrating agent. The newly prepared semi‐interpenetrating polymer network (semi‐IPN) hydrogels exhibited much better properties as temperature‐sensitive polymers than they did in the past. Characterizations of the IPN hydrogels were investigated using a swelling experiment, FTIR spectroscopy, and differential scanning calorimetry (DSC). Semi‐IPN hydrogels exhibited a relatively high temperature dependent swelling ratio in the range of 23–28 at room temperature. DSC was used for the determination of the lower critical solution temperature of the semi‐IPN hydrogel. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3032–3036, 2003  相似文献   

17.
The synthesis of a thermoresponsive graft copolymer consisting of a maleic acid/vinyl acetate alternating copolymer backbone (MAc‐alt‐VA) and poly(N‐isopropylacrylamide) (PNIPAM) side chains is reported. Turbidimetric measurements in dilute aqueous solutions showed that no macroscopic phase separation takes place when the temperature is raised above the lower critical solution temperature (LCST) of PNIPAM, even at pH = 2. Moreover, in semi‐dilute aqueous solutions, a pronounced thermally induced viscosity increase (thermothickening) was observed. This thermoresponsive behaviour has been attributed to the interconnection of the hydrophilic MAc‐alt‐VA graft copolymer backbones by means of the hydrophobic PNIPAM side chain aggregates formed as the temperature increases above the LCST of this polymer. Copyright © 2004 Society of Chemical Industry  相似文献   

18.
A series of thermosensitive hydrogels containing adamantyl groups were fabricated by copolymerization of N‐isopropylacrylamide and adamantyl methacrylate (AdMA). The thermal properties of such copolymeric hydrogels were studied by differential scanning calorimetry. The mechanical properties were emphasized through compression, tension, and dynamic mechanical analysis (DMA). Moreover, Rubber elasticity theory was used to evaluate the network parameters based on compressive stress–strain measurements. The results indicate that both the microstructure and physical properties strongly depend on the quantity of AdMA in the copolymeric gels. As the content of AdMA increases, the volume phase transition temperature of hydrogels decreases linearly, and the mechanical strength can be significantly improved, the effective crosslinking density (νe) increases monotonously, while the polymer‐water interaction parameter (χ) decreases first and then increases with AdMA content. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
Stimuli‐responsive biocompatible and biodegradable materials can be obtained by combining polysaccharides with polymers exhibiting lower critical solution temperature (LCST) phase behavior, such as poly(N‐isopropylacrylamide) (PNIPAAm). The behavior of aqueous solutions of sodium alginate (NaAl) grafted with PNIPAAm (NaAl‐g‐PNIPAAm) copolymers as a function of composition and temperature is presented. The products obtained exhibit a remarkable thermothickening behavior in aqueous solutions if the degree of grafting, the concentration, and the temperature are higher than some critical values. The sol–gel‐phase transition temperatures have been determined. It was found that at temperatures below LCST the systems behave like a solution, whereas at temperatures above LCST, the solutions behave like a stiff gel, because of PNIPAAm segregation. This behavior is reversible and could find applications in tissue engineering and drug delivery systems. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
Polysaccharide‐based hydrogels, such as xanthan maleate/poly(N‐isopropylacrylamide) (PNIPAAm) interpenetrated polymer networks, are thermostimulable materials of interest for the controlled release of biologically active components due to conformation changes at the low critical‐solution temperature (LCST) PNIPAAm phase transition. The phase transition of these interpenetrated polymer network hydrogels, where PNIPAAm is in a ‘confined’ environment, was examined by high resolution magic angle spinning nuclear magnetic resonance and differential scanning calorimetry. High resolution magic angle spinning nuclear magnetic resonance spectroscopy allows the accurate determination of LCST and an evaluation of the corresponding thermodynamic data. More particularly, the evolution of these data as a function of the composition of the hydrogel, and of the external parameters such as pH and ionic strength, was considered. LCST shows a minimal value with increasing xanthan content. Moreover, it was possible to calculate, as a function of temperature, the fraction of NIPAAm which remains uncollapsed. The data obtained for pure PNIPAAm hydrogels are in good agreement with recently published results. The phase transition of PNIPAAm in a diphasic hydrogel is broader when PNIPAAm is ‘confined’ within an interpenetrated polymer network than in a pure PNIPAAm crosslinked network. The widening of the transition with increasing xanthan content indicates a reduction of the PNIPAAm interchain aggregation in a network structure. Copyright © 2011 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号