共查询到20条相似文献,搜索用时 15 毫秒
1.
A fascinating nanoobject, diblock polymer brushes with a hard core of multiwalled carbon nanotubes (MWNTs) and a relatively soft shell of poly(methylmethacrylate)-block-polystyrene (PMMA-b-PS), was easily constructed by in situ reversible addition fragmentation chain transfer polymerization (RAFT) of methylmethacrylate followed by styrene (St) on the modified convex surfaces of MWNTs (MWNT-PMMA). The structure and morphology of the hybrid nanomaterials were characterized by FTIR, TEM, SEM, NMR, DSC and TGA. The results showed that both styrene and acrylate type monomers can be easily initiated and then propagated on the MWNT sidewalls via the in situ RAFT approach, and the length of the PS blocks increases with increasing St:MWNT-PMMA weight feed ratio. 相似文献
2.
A water soluble chitosan derivative (p‐chitosan) was synthesized and used to functionalize multiwalled carbon nanotubes (MWCNTs) through the noncovalent interaction. The interaction of p‐chitosan with MWCNTs was investigated by analyzing the spectra of ultraviolet‐visible, Fourier transform infrared, Raman, and X‐ray photoelectron. Circular dichroism spectroscopy was used to study the interaction as well. The results of the circular dichroism spectra indicate that, the interaction of p‐chitosan with MWCNT makes p‐chitosan less regularly structured. It was found that the interaction of p‐chitosan with MWCNTs at a lower temperature is stronger than that at a higher temperature; pH conditions affect the interaction between p‐chitosan and MWCNTs. © 2011 American Institute of Chemical Engineers AIChE J, 2012 相似文献
3.
Water-soluble single-walled carbon nanotubes (SWNTs) were synthesized by grafting poly(acrylamide) (PAM) from the surface of SWNT via reversible addition-fragmentation chain transfer (RAFT) polymerization. The RAFT agents were covalently attached to the SWNTs by functionalizing SWNTs with in situ generated diazonium compounds. The product was characterized by means of FT-IR, Raman, 1H NMR, TGA and TEM. The results showed that PAM chains had successfully grafted from SWNT by RAFT polymerization. The amount of PAM grown from SWNT increased with the polymerization time. The acrylamide conversion increased linearly with the polymerization time, indicating the “living” characteristics of the RAFT polymerization. TEM was utilized to image PAM-g-SWNT, showing relatively uniform polymer coatings present on the surface of individual, debundled nanotubes. 相似文献
4.
Xiao‐Hua Zhang Zheng‐Hua Zhang Wei‐Jian Xu Fan‐Cai Chen Jian‐Ru Deng Xiao Deng 《应用聚合物科学杂志》2008,110(3):1351-1357
The toughness of cycloaliphatic epoxy resin 3,4‐epoxycyclohexylmethyl‐3′,4′‐epoxycyclohexane carboxylate (ERL‐4221) has been improved by using multiwalled carbon nanotubes (MWCNTs) treated by mixed acids. The MWCNT/ERL‐4221 composites were characterized by Raman spectroscopy and their mechanical properties were investigated. A significant increase in the tensile strength of the composite from 31.9 to 55.9 MPa was obtained by adding only 0.05 wt % of MWCNTs. And a loading of 0.5 wt % MWCNTs resulted in an optimum tensile strength and cracking energy, 62.0 MPa and 490 N cm, respectively. Investigation on the morphology of fracture surface of the composites by field emission scanning electron microscopy demonstrated the crack pinning‐front bowing and bridging mechanisms of toughening. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
5.
Poly(ethylene terephthalate) (PET) hybrids with newly synthesized functionalized multiwalled carbon nanotubes (MWNTs) were obtained by carrying out the in situ polycondensation of ethylene glycol with dimethyl terephthalic acid. The PET hybrids were melt-spun to produce monofilaments with various functionalized MWNT contents and draw ratios (DRs). The thermomechanical properties and morphologies of the PET hybrid fibers were determined using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), wide angle X-ray diffraction (XRD), electron microscopy (SEM and TEM), and a universal tensile machine (UTM). The XRD analysis and TEM micrographs show that the levels of nanosize dispersion can be controlled by varying the MWNT content. It was found that the addition of only a small amount of functionalized MWNTs was sufficient to improve the properties of the PET hybrid fibers. The maximum enhancement in the ultimate tensile strength was found to arise at a functionalized MWNT content of 0.5 wt %. However, the initial modulus was found to increase linearly with increases in the functionalized MWNT loading from 0 to 1.5 wt %. The thermal properties and conductivities of the PET hybrid fibers were found to be better than those of pure PET fibers. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
6.
The polypropylene‐grafted multiwalled carbon nanotubes (PP‐MWCNTs) were produced from the reaction of PP containing the hydroxyl groups and MWCNTs having 2‐bromoisobutyryl groups. The PP‐MWCNTs had a significantly rougher surface than the original MWCNTs. PP‐MWCNTs had PP layers of thickness 10–15 nm on the outer walls of the MWCNTs. PP/PP‐MWCNT composites and PP/MWCNT composites were prepared by solution mixing in o‐xylene. Unlike PP/MWCNT composites, PP‐MWCNTs were homogeneously dispersed in the PP matrix. As a consequence, the thermal stability and conductivity of PP/PP‐MWCNT composites were dramatically improved even if only 1 wt % of PP‐MWNTs was added to the PP matrix. The good miscibility of PP and PP‐MWCNTs plays a critical role in the formation of the homogeneous composites and leads the high thermal stability and conductivity. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
7.
The PS-grafted multiwalled carbon nanotubes (MWNTs) were produced by the bromo-ended PS (PS-Br) and pristine MWNTs in 1,2-dichlorobenzene at 110 °C for 72 h via atom transfer radical polymerization (ATRP). Bromo-ended PS (PS-Br) used as an initiator for the functionalization of MWNTs was synthesized with styrene by ATRP conditions using CuBr and N,N,N′,N′,N″-pentamethyldiethylenetriamine as catalyst. The PS-grafted MWNTs were fully characterized by 1H-NMR, FT-IR, DSC, TGA, and SEM. The PS-grafted MWNTs were found to be highly soluble in a variety of organic solvents. The PS was chemically attached to the surfaces of MWNTs via ATRP approach, and the grafting amount of PS was 40–90%. From TGA and DSC measurements, the PS-grafted MWNTs were decomposed at lower temperature compared to that of PS-Br, and the functionalization of MWNTs increased the glass-transition temperature (Tg) of the grafted PS. The PS/PS-grafted MWNTs nanocomposites were prepared with PS and PS-grafted MWNTs by solution mixing in dimethylformamide (DMF). The resulting nanocomposites were found to be the homogeneous dispersion of PS-grafted MWNTs in PS matrix via aromatic (π–π) interactions between PS and PS-grafted MWNTs as determined by SEM and TEM. 相似文献
8.
Multiwalled carbon nanotubes (MWNT) were functionalized with segmented polyurethanes (PU) by the “grafting to” approach. Raman and X‐ray photoelectron spectroscopy (XPS) spectra show that the sidewalls of MWNTs have been functionalized with acid treatment, and the amount of COOH increases with increasing acid treatment time. FTIR and X‐ray diffraction (XRD) spectra confirm that PU is covalently attached to the sidewalls of MWNTs by esterification reaction. Similar to the parent PU, the functionalized carbon nanotube samples are soluble in highly polar solvents, such as dimethyl sulfoxide (DMSO) and N,N‐dimethylformamide (DMF). The functionalized acid amount and the grafted PU amount were determined by thermogravimetric analyses (TGA). Comparative studies, based on SEM images between the PU‐functionalized and chemically defunctionalized MWNT samples, also reveal the covalent coating character. Dynamic mechanical analysis (DMA) of nanocomposite films prepared from PU and PU‐functionalized MWNTs show enhanced mechanical properties and increased soft segment Tg. Tensile properties indicate that PU‐functionalized MWNTs are effective reinforcing fillers for the polyurethane matrix. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007 相似文献
9.
Yi‐Jhen Wu Liang Chao Ko‐Shan Ho Ying‐Jie Huang Yu‐Lan Huang Chi‐Shiang Yang Bo‐Hao Tseng 《应用聚合物科学杂志》2012,124(6):5270-5278
A multiwalled carbon nanotubes (MWCNTs) were carboxylated after refluxing with sulfuric and nitric acids. These attached carboxylic acid groups were further condensated with o‐phenylene diamine into amide catalyzed by dicyclohexyl carbodiimide (DCC). The obtained amidized MWCNTs were in situ‐polymerized with aniline monomers to graft a conducting polyaniline (PANI) onto MWCNT (ES‐g‐MWCNTs) through the polymerization occurring in the ortho‐ and meta‐positions. The reduced conductivity of the MWCNT after carboxylation can be recovered after grafting with PANI, which owns a strong λmax at the near infrared region due to the extended conjugation from MWCNTs to PANI. Transmission electronic microscopic pictures show a gradual broadening of the MWCNT diameter after carboxylation, amidization, and polymerization. The weight loss from the thermogravimetric thermograms due to the carboxylations of MWCNTs, amidized MWCNTs, and the PANI grafted MWCNTs into CO2 can be used to estimate the degree of carboxylation, amidization, and grafting of PANI. The degree of carboxylation of MWCNT calculated from ESCA spectrum is around 23% close to that estimated from TGA thermogram. The doping level of redoped PANI‐grafted MWCNT is found to be 27.78% much less than the maximum 50% of neat PANI. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
10.
Alireza Hosseinzadeh Hassan Namazi 《Polymer-Plastics Technology and Engineering》2020,59(16):1812-1821
ABSTRACT In our work, reversible addition-fragmentation chain transfer (RAFT)/carbon nanotube (CNT)/acrylic acid (AA)/acrylamide (AAm) nanocomposite was synthesized by living radical polymerization. The structure and surface morphology of the synthesized RAFT-CNT-Hydrogel nanocomposites were analyzed by FTIR, 1HNMR, SEM, TEM, XRD, and TGA/DTG techniques. The results indicated that PAA/AAm chains grafted with CNT by RAFT polymerization. RAFT-CNT-Hydrogel nanocomposites for drug release investigated in different buffers resulted in a strong pH-sensitive behavior. In total, the obtained hydrogel drug-delivery systems are presented a proper effect versus stomach cancer in vitro and in vivo, and it can be used as candidates for controlled release of anticancer drugs in stomach with exalted remedial agents. 相似文献
11.
Cristal Cabrera Miranda Odilia Pérez Camacho Guillermo Martínez Colunga Maricela García Zamora María Teresa Rodríguez Hernández Víctor Comparán Padilla Scott Collins 《Polymer Engineering and Science》2023,63(3):959-971
This study reports nanocomposite synthesis based on high-density polyethylene with carbon nanotubes through in situ polymerization by coordination, and the use of an aluminohydride zirconocene/MAO system as a catalyst. Nanocomposites of linear polyethylene exhibit higher molar masses than pure high-density polyethylene synthesized under similar conditions; where multiwalled carbon nanotubes (MWCNTs) acted as nucleating agents, shifting the crystallization temperature to higher values than neat high-density polyethylene. Well-dispersed MWCNTs in the HDPE matrices of the obtained nanocomposites are observed by SEM, where most of the nanocomposites showed an improvement in their thermal stability and electric conductivity, besides it is possible to obtain nanocomposites containing up to 41 wt% of nanofiller in the polymeric matrix. The aluminohydride complex n-BuCp2ZrH3AlH2, activated with MAO at Al/Zr ratios of 2000, produced homogeneous HDPE/MWCNT composites under in situ polymerization conditions, at 70°C and 2.9 bar of ethylene pressure, with minimal residual alumina in the HDPE matrix. 相似文献
12.
In this work we have studied the utilization of multiwalled carbon nanotubes (MWCNTs) as filler‐reinforcement to improve the performance of plasticized starch (PS). The PS/MWCNTs nanocomposites were successfully prepared by a simple method of solution casting and evaporation. The morphology, thermal behavior, and mechanical properties of the films were investigated by means of scanning electron microscopy, wide‐angle X‐ray diffraction, differential scanning calorimetry, and tensile testing. The results indicated that the MWCNTs dispersed homogeneously in the PS matrix and formed strong hydrogen bonding with PS molecules. Compared with the pure PS, the tensile strength and Young's modulus of the nanocomposites were enhanced significantly from 2.85 to 4.73 MPa and from 20.74 to 39.18 MPa with an increase in MWCNTs content from 0 to 3.0 wt %, respectively. The value of elongation at break of the nanocomposites was higher than that of PS and reached a maximum value as the MWCNTs content was at 1.0 wt %. Besides the improvement of mechanical properties, the incorporation of MWCNTs into the PS matrix also led to a decrease of water sensitivity of the PS‐based materials. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007 相似文献
13.
This work aims to improve the rheological properties and stability of multiwalled carbon nanotubes (MWCNTs)/acrylamide (AA) base skeleton polymer blends at harsh environment of high salinity-high temperature (HS-HT) or various pH. Different co/terpolymers have been accomplished to modify the structure of AA polymer by free-radical copolymerization of AA-based monomers. Anionic, cationic, and hydrophobic functional groups were used for the synthesis of polyelectrolyte, polyampholytic, and partially hydrophobic AA polymer types. The conversion, molecular weight, and poly dispersity of co/terpolymers have been evaluated by nuclear magnetic resonance (1H-NMR), gel permeation chromatography, and differential scanning calorimetry analysis. The effects of sonication power, concentration of polymer, and concentration of MWCNTs were also investigated on rheological behavior of co/terpolymers. The results show that negative polyelectrolyte and polyampholytic polymers are the best candidates for the improvement of MWCNTs/polymer stability and viscosity at HS-HT and alkali environment, respectively. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47205. 相似文献
14.
In this work, we analyzed tensile properties of polypropylene‐multiwalled carbon nonotubes composite fibers. The multiwalled carbon nanotubes (MWCNTS) were used in different contents of 0, 1, 2, 3, 4, and 5 wt %. Dispersing agents were used to disperse MWCNTs in polypropylene matrix. After the dispersing agent was removed, the mixture was melt mixed. The fibers were spun by a home‐made melt spinning equipment and stretching was done at a draw ratio of 7.5. By using 1–5 wt % of MWCNTs, the modulus of composite fibers increased by 69–84% and tensile strength increased about 39% when compared with the virgin polypropylene fibers. In addition, the MWCNTs dispersion in the matrix was monitored by scanning electron microscopy and transmission electron microscopy. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
15.
A novel amino‐cyclodextrin was synthesized, and it was covalently attached to multiwalled carbon nanotubes (MWNTs). The functionalized MWNTs (f‐MWNTs) have very good aqueous dispersibility. Bovine serum albumin (BSA) was adsorbed onto f‐MWNTs through noncovalent interactions, including the hydrophobic interaction of the residues of BSA with the wall of MWNT and the guest–host interaction of the residues with the cyclodextrin (CD) moieties of f‐MWNTs. The ultraviolet–visible (UV–vis) absorption of the f‐MWNT‐BSA hybrid was measured with UV–vis spectrometer, and the absorbance can be described well with the Beer–Lambert law. The X‐ray diffraction patterns have indicated that the crystalline form of BSA has been changed after the adsorption of BSA on f‐MWNTs. The circular dichroism spectra have shown that a high percentage of α‐helical content can be retained for BSA adsorbed on f‐MWNTs. The results also indicate that the change of secondary structure of BSA is mainly due to the hydrophobic interaction of the residues of BSA with the wall of f‐MWNT, whereas the secondary structure is much less affected by the interaction of the CD moieties with BSA. © 2011 American Institute of Chemical Engineers AIChE J, 2011 相似文献
16.
Composites with nickel particles coated multiwalled carbon nanotubes (Ni‐MWNTs) embedded into polyvinylidene fluoride (PVDF) were prepared by solution blending and hot‐press processing. The morphology, structure, crystallization behavior, and dielectric properties of composites were studied. The results showed that the crystallization of PVDF was affected by Ni‐MWNTs. With the increment of Ni‐MWNTs, the content of β‐phase in PVDF increased. The dielectric permittivity was as high as 290 at 103 Hz when the weight fraction of Ni‐MWNTs was 10%. The results can be explained by the space charge polarization at the interfaces between the insulator and the conductor, and the formation of microcapacitance structure. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3746–3752, 2013 相似文献
17.
Poly(p‐phenylene benzobisoxazole)/multiwalled carbon nanotubes (PBO‐MWCNT) composites with different MWCNT compositions were prepared through in situ polymerization of PBO in the presence of carboxylated MWCNTs. The nanocomposite's structure, thermal and photophysical properties were investigated and compared with their blend counterparts (PBO/MWCNT) using Fourier transform infrared spectra, Raman spectra, Wide‐angle X‐ray diffraction, thermogravimetric analysis, UV‐vis absorption, and photoluminescence. The results showed that MWCNTs had a strong interaction with PBO through covalent bonding. The incorporation of MWCNTs increased the distance between two neighboring PBO chains and also improved the thermal resistance of PBO. The investigation of UV‐vis absorption and fluorescence emission spectra exhibited that in situ PBO‐MWCNT composites had a stronger absorbance and obvious trend of red‐shift compared with blend PBO/MWCNT composites for all compositions. This behavior can be attributed to the efficient energy transfer through forming conjugated bonding interactions in the PBO‐MWCNT composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
18.
Peijun Ji Huishan Tan Xin Xu Wei Feng 《American Institute of Chemical Engineers》2010,56(11):3005-3011
Lipase was covalently attached to multiwalled carbon nanotubes (MWNTs). Structural changes of the lipase upon attachment onto MWNTs were analyzed through circular dichroism and FTIR spectroscopy. The conjugate was utilized for the resolution of a model compound (R,S)‐1‐phenyl ethanol, and the reaction medium was n‐heptane. The enzymatic resolutions were carried out at temperatures from 35 to 60°C. The results show that the lipase attached onto MWNTs has significantly affected the performance of the enzyme in terms of temperature dependence and resolution efficiency. The activity of MWNT–lipase was less temperature‐dependent compared with that of the native lipase. The resolution efficiency was much improved with MWNT–lipase. MWNT–lipase retained the selectivity of the native lipase for (R)‐1‐phenyl ethanol. The consecutive use of MWNT–lipase showed that MWNT–lipase had a good stability in the resolution of (R,S)‐1‐phenyl ethanol. © 2010 American Institute of Chemical Engineers AIChE J, 2010 相似文献
19.
To increase the applicability of multiwalled carbon nanotubes (MWCNTs), functional groups were generated on the generally inert surface of MWCNTs using gliding arc (GA) plasma. MWCNTs were modified using plasma polymerization with styrene (St) as monomer. The surface compositional and structural changes that occur on MWCNTs were investigated using FT‐IR, Raman spectroscopy, BET surface area, and elemental analysis. Dispersion of the treated MWCNTs in different solvents was evaluated. Transmission electron microscopy images showed that the plasma‐treated MWCNTs had a better dispersion than the untreated ones in nonpolar solvents. Subsequently, MWCNTs‐reinforced polypropylene (PP) composites were prepared by internal batch mixing with the addition of 1.0 wt % MWCNTs. The morphology of MWCNTs/PP nanocomposites was studied through scanning electron microscopy. Observations of SEM images showed that the plasma‐treated MWCNTs had a better dispersion than the untreated MWCNTs either on the composite fracture surfaces or inside the PP matrix. Moreover, the mechanical tests showed that the tensile strength and elongation at break were improved with the addition of polystyrene‐grafted MWCNTs. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
20.
Wei Zhao Yi‐Tao Liu Qing‐Ping Feng Xu‐Ming Xie Xiao‐Hao Wang Xiong‐Ying Ye 《应用聚合物科学杂志》2008,109(6):3525-3532
This article investigated the dispersion and modification of multiwalled carbon nanotubes (MWCNTs) through solution mixing based on the noncovalent interactions between polystyrene (PS) and MWCNTs. It was found that the interactions were robust enough to stabilize the debundled MWCNTs in solution after vigorous sonication. The PS attached, which altered the surface properties of MWCNTs and made them easily soluble in organic solvents, can remain even after careful washing with solvents. Besides, many other PS‐based polymers were proved to retain the ability to disperse MWCNTs to form stable solutions. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献