首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为改善和提高汽车支架类零件常用的AZ91D镁合金表面耐蚀性能,采用两步法在其表面电沉积Ni-SiO_2复合镀层。设计了正交试验,以SiO_2质量分数和表面粗糙度作为评价指标,运用正交试验法确定了施镀工艺参数的影响主次顺序,并得到最优施镀工艺参数为:镀液中SiO_2颗粒质量浓度20 g/L、电流密度8 A/dm~2、超声波功率300 W、镀液温度55℃。结果表明:采用最优施镀工艺制备出Ni-SiO_2纳米复合镀层,其表面平整、致密,腐蚀均匀,腐蚀速率为65 g/(m~2·d),明显低于镁合金基体的96 g/(m~2·d)。Ni-SiO_2纳米复合镀层能够提供有效的表面防护,改善和提高镁合金耐蚀性能。  相似文献   

2.
采用电沉积的方法在低碳钢表面成功制备了Ni-AlN纳米复合镀层,通过称量法计算出沉积速率,采用X-射线衍射、扫描电镜和电化学测量技术探究了镀液中不同AlN浓度对镀层的组织结构、微观形貌和耐蚀性能的影响。结果表明,在电沉积过程中,沉积速率随镀液中AlN浓度的增大呈先增大后减小的趋势;镀液中AlN的加入,使镀层表面产生了米粒状的多晶单元,提高了镀层的耐蚀性能,随着镀液中AlN浓度的增加耐蚀性能先提高后降低。当镀液中纳米AlN质量浓度为1 g/L时,复合镀层中的AlN质量分数约为4.5%,表面致密性最好,与纯Ni镀层相比,腐蚀电流密度降低了2个数量级,耐蚀性能最佳。  相似文献   

3.
采用脉冲电源,在铜表面制备了复合镀层,研究了占空比、镀液中ZrO2纳米微粒添加量和脉冲频率对复合镀层的硬度、沉积速率和耐蚀性的影响。结果表明,随脉冲占空比的增加,镀层硬度、沉积速率和耐蚀性能均呈现先增大后减小的趋势;ZrO2纳米微粒的增加使镀层硬度增加,而沉积速率和耐蚀性能为先增大后减小;随脉冲频率的增加,镀层硬度、沉积速率及耐蚀性能均增加。最佳工艺参数应控制占空比为50%、ZrO2纳米微粒质量浓度9g/L、脉冲频率2000Hz。  相似文献   

4.
以羧基类物质作配位剂,在A3钢板表面电沉积制备Ni–P合金镀层。镀液基础组成和工艺参数为:NiSO4·6H2O 240 g/L,NiCl2·6H2O 45 g/L,NaH2PO2·H2O 50 g/L,H3BO3 35 g/L,NaF30 g/L,pH 2.0,温度70°C,电流密度2.5 A/dm2,时间20 min。研究了镀液中羧基配位剂含量对Ni–P镀层沉积速率和耐蚀性的影响。结果表明,随羧基配位剂含量增大,沉积速率减小,镀层耐蚀性先改善后变差。其适宜含量为20~30 g/L。羧基配位剂含量为25 g/L时,镀层外观光亮、结合力良好,耐蚀性和耐磨性优于未加配位剂的镀层。镀层的P含量为18.11%,属于高磷非晶态Ni–P镀层。羧基配位剂具有细化镀层晶粒的作用,使镀层表面更为平整、致密。  相似文献   

5.
采用电刷镀工艺制备了Ni–Y2O3纳米复合镀层,镀液组成和工艺条件为:NiSO4·6H2O 230~255 g/L,柠檬酸三钠90~105 g/L,乙酸铵20~30 g/L,Y2O3 15 g/L,表面活性剂0.01 g/L,pH 7.2~7.5,温度20°C,电压12 V,电笔速率100~120 mm/s,时间15 min。分别利用电子显微镜、X射线衍射仪和电化学工作站表征了镀层的表面形貌、微观结构和耐腐蚀性能。结果表明,与快速镍镀层相比,Ni–Y2O3纳米复合镀层更为平整、致密,晶粒相对细小。Ni–Y2O3复合镀层在3.5%NaCl溶液中的自腐蚀电位和腐蚀速率分别为-184.86 mV和0.0596 mm/a,腐蚀后表面只是局部存在轻微的凹坑,因此Ni–Y2O3复合镀层的耐腐蚀性能明显优于快速镍镀层。  相似文献   

6.
介绍了一种硫酸锌镀锌工艺,其镀液组成包括硫酸锌140~200 g/L,硫酸钠60~80 g/L,氯化钾80~140 g/L,硼酸25~30g/L,Lx-600A光亮剂15~20mL/L.其操作条件为:温度5~60 ℃,pH 3~6,电流密度2~5A/dm2,阴极移动速率15~20次/min.描述了镀液的配制,讨论了镀液中各组分及工艺条件对镀液和镀层性能的影响.该工艺沉积速率高、分散能力好,所得镀层达到全光亮,有机物夹杂较氯化钾镀锌件少.  相似文献   

7.
通过正交试验方法,研究(Ni-P)-PTFE化学复合镀工艺,得到了最佳配方及工艺参数,对镀层的形貌、硬度、厚度、孔隙率和耐蚀性能进行了检测和评价。实验结果表明,最佳配方及工艺条件为:32g/L硫酸镍、24g/L次磷酸钠、16g/L柠檬酸钠、20g/L乙酸钠、20mL/L乳酸、8g/L丁二酸、4g/L聚四氟乙烯、0.01g/L十二烷基磺酸钠,pH为5,θ为90℃,施镀时间t为2.5h。在该工艺条件下,镀层硫酸铜点滴时间t可达312s,具有良好的耐腐蚀性;沉积速率达28.6g/(m2·h);镀层表面较平整,孔隙率较低,无起皮和脱落,与基体结合良好。  相似文献   

8.
为了提高化学镀Ni–P合金的沉积速率,采用正交试验法研究了以乳酸为配位剂的复合加速剂。通过测定镀速、镀液稳定性、镀层孔隙率及耐盐雾腐蚀性能,得出最佳的复合加速剂配方为:20mL/L乳酸 8g/L丁二酸 3mL/L有机酸加速剂 4g/L钠盐加速剂。采用此复合加速剂,镀速达32μm/h,镀液在PdCl2加速试验中的稳定时间为7.49h,镀层孔隙率为0.09个/cm2,耐盐雾腐蚀时间达925h。  相似文献   

9.
采用正交试验方法研究了珍珠镍电镀液配方与工艺参数,获得了最佳的镀液组成和工艺条件:NiSO4_·6H_2O 400 g/L,NiCl_2·6H2O 35 g/L,H_38O_3 40 g/L,柔软剂BSI 24.0 mL/L,润湿剂MA-80 1.0 mL/L,沙剂TB 5.6 mL/L,稳定剂PVA-124 2.4 mL/L,温度55℃,pH 4.0,阴极移动速率4次/s,阴极电流密度6 Adm~2,电镀时间5 min。采用扫描电镜、x射线荧光测厚仪、显微硬度计、中性盐雾试验等方法测试了优化条件下所得镀层的性能,并与现有的HN-80工艺进行了对比。研究开发的珍珠镍电镀工艺起沙快,电流密度范围宽,所得镀层外观为银白色,沙感强,镀层凹坑直径在3~10μm之间,但其硬度和耐蚀性能低于HN-80工艺所得镀层。  相似文献   

10.
采用正交实验的方法,研究了碳纤维增强环氧树脂复合材料化学镀Ni-P合金的工艺。通过对镀层结合力、金相组织、沉积速率、硬度等性能的比较,选出最优镀液配方,并对所得最优组镀件进行SEM和EDS分析及耐腐蚀性能测试。通过正交实验得出最佳镀液配方为:硫酸镍30g/L,次磷酸钠25g/L,乳酸20mL/L,乙酸钠15g/L。所得镀层中磷的质量分数为11.88%,是高磷镀层;经耐腐蚀性能检测,该镀层具有良好的耐蚀性。  相似文献   

11.
Ni-P/n-Al2 O3 化学复合镀镀液及工艺研究   总被引:5,自引:3,他引:2  
以电位和镀速为评价指标,通过正交实验和单因素实验,确定了Ni-P/n-Al2O3化学复合镀的最佳工艺配方为:温度85~95℃,气体搅拌,pH值为4.5~5。所得镀液的最佳组成为:ρ(次亚磷酸钠)为21g/L,ρ(柠檬酸钠)为14g/L,ρ(苹果酸)12g/L,ρ(添加剂丁二酸)5g/L,ρ(氧化铝)8g/L,通过级差分析得到镀液配方中各因素对镀层耐蚀性能的影响次序为:柠檬酸〉次磷酸酸钠〉纳米氧化铝〉添加剂〉苹果酸。扫描电镜研宄表明,镀层均匀致密,为明显的胞状物;X-射线衍射实验证实,复合镀层的结构为非晶态。与Ni-P镀层相比,Ni-P/n-Al2O3化学复合镀镀层在质量分数分别为3.5%的氯化钠、10%的稀盐酸和10%的稀硫酸溶液中的耐蚀性能有了明显的提高。  相似文献   

12.
酸性化学镀Ni-Cu-P工艺及性能研究   总被引:3,自引:0,他引:3  
研究了酸性化学镀Ni Cu P镀液的pH值对镀层性能和镀速的影响。采用酸性镀液体系,通过正交实验,确定了化学镀Ni Cu P的工艺配方为:0 3g/LCuSO4·5H2O,25g/LNiSO4·6H2O,30g/L柠檬酸钠,20g/L络合剂,40g/L缓冲剂,25g/LNaH2PO2·H2O,0 16g/L稳定剂,θ80~85℃,pH值5~6,t为2h。通过X射线衍射实验研究了镀层的晶型结构,并对化学镀Ni Cu P镀层与Ni P镀层的极化行为进行了研究。结果表明:所得的化学镀Ni Cu P镀层为非晶态结构;其外观光亮,耐硝酸腐蚀时间大于800s,孔隙率为9级,镀速为8μm/h;Ni Cu P合金镀层比Ni P镀层具有更优异的耐蚀性能。  相似文献   

13.
采用由30 g/L氧化锌、180 g/L氢氧化钠、2.8 g/L香草醛、4 g/L硫脲、4 g/L三乙烯四胺、1 mL/L甲醛和0.15 g/L SiC(粒径约40 nm)组成的碱性镀液对Q235钢脉冲电镀Zn-纳米SiC复合镀层,通过优化得到较佳的工艺条件为:平均电流密度2.0 A/dm2,占空比30%,镀液温度20...  相似文献   

14.
通过赫尔槽试验与方槽试验研究了镀液组成和工艺条件对白铜锡电镀层外观与组成的影响。最佳镀液组成与工艺条件为:Cu2P2O7·3H2O16~19g/L,Sn2P2O712~15g/L,K4P2O7·3H2O200~250g/L,K2HPO460~80g/L,有机胺类添加剂JZ-11.2~1.8mL/L,pH=8.5~8.7,温度20~25°C,阴极电流密度1.0A/dm2。采用该工艺对基体施镀20min可得到厚度为5.09μm、锡的质量分数为40%~50%的均匀白亮的Cu-Sn合金镀层。Cu-Sn合金镀层的晶体结构以CuSn和Cu41Sn11为主,结晶细致、无微裂纹,显微硬度为372HV,耐蚀性能比相同厚度的光亮镍镀层好。  相似文献   

15.
通过对电沉积仿不锈钢Fe-Ni-Cr合金镀层的工艺研究,优化并确定的镀液组成及工艺条件为:Cr2(SO4)3.6H2O 200 g/L、FeSO4.7H2O 9 g/L、NiSO4.6H2O 6 g/L、柠檬酸铵60 g/L、抗坏血酸10 g/L、H3BO325 g/L、(NH4)2SO4100 g/L、NaF 4 g/L、十二烷基硫酸钠0.06 g/L、温度50℃、pH1.5、阴极电流密度16 A/dm2。在该条件下所得镀层的外观、组成、硬度和耐蚀性能等都基本上与304不锈钢相近。  相似文献   

16.
在90℃下,采用含有25 g/L硫酸镍,20 g/L次磷酸钠、35 g/L柠檬酸钠、0~6 g/t,卤磷酸钙和15 g/t.硫酸铵的镀液(pH 5.5),制备了基于卤磷酸钙的发光化学镍复合镀层.研究了镀液pH对复合镀层的沉积速率及卤磷酸钙含量的影响.采用硬度测量、磨损测试、腐蚀试验、紫外光谱,扫描电镜和X射线衍射对复合镀层进行了表征.在最佳卤磷酸钙质量浓度(4 g/L)下所得的复合镀层含77.59%(质量分数)镍、7.58%(质量分数)磷和14.83%(质量分数)卤磷酸钙.由于卤磷酸钙是硬质粒子,随着其嵌入量的增多,复合镀层的硬度增大.在存在卤磷酸钙的条件下,化学镍复合镀层的耐磨和耐蚀性能均显著提高.  相似文献   

17.
李勇 《电镀与环保》2006,26(1):25-27
研究了化学复合镀(Ni-P)-CeO2工艺中CeO2对沉积速率、镀层硬度以及耐磨性能的影响.结果表明:通过制定合理的镀复工艺和控制镀液中稀土CeO2微粒的添加量,能明显提高沉积速率、镀层的硬度和耐磨性.综合考虑,当稀土CeO2的添加量15~20 g/L时,镀层综合性能最好.  相似文献   

18.
王照锋 《电镀与涂饰》2014,33(15):656-658
通过复合电刷镀在20钢基体表面制备镍铁–立方氮化硼(CBN)复合镀层。研究了施镀电压、镀液温度及镀笔速率对复合镀层中CBN含量的影响,分析了镀层中CBN含量与耐磨性之间的关系。复合电刷镀NiFe–CBN的镀液组成和最佳工艺条件为:NiSO4·6H2O 270~300 g/L,FeCl2·2H2O 23~27 g/L,H3BO326~30 g/L,Na3C6H5O7·2H2O 20~30 g/L,糖精2~3 g/L,十六烷基三甲基溴化铵0.2~0.3 g/L,pH 3.2~4.0,电压14 V,温度50°C,镀笔速率15 m/min,时间100~120 min。在最佳工艺下所得镀层的CBN质量分数为9.8%,显微硬度为770 HV,耐磨性和结合力良好。  相似文献   

19.
以Q235钢为基体,采用脉冲电镀方法在三价铬体系镀液中制备了Ni–Cr合金镀层。镀液组成和工艺条件为:CrCl364.6 g/L,NiSO4·6H2O 31.4 g/L,V(二甲基甲酰胺)∶V(水)=1∶1,C6H5Na3O7·2H2O 117.64 g/L,pH 3.0,NaBr 103 g/L,搅拌速率200 r/min,温度55°C,时间40 min。借助带有能谱仪的扫描电镜、电化学工作站、摩擦磨损试验机、维氏硬度计等设备,研究了脉冲频率对镀层微观形貌、耐蚀性能、耐磨性能及显微硬度的影响。结果表明,随脉冲频率增大,Ni–Cr合金镀层的耐蚀性、耐磨性及显微硬度均呈先升高后降低的趋势,较适宜的脉冲频率为1 000 Hz。  相似文献   

20.
采用化学复合镀方法在45钢基体上镀覆Ni–P–石墨复合镀层,通过改变镀液的pH、搅拌速度、表面活性剂和石墨(40nm)的用量,优化了化学复合镀工艺,确定了较优的工艺参数:石墨粒子240mg/L,表面活性剂(十二烷基苯磺酸钠)0.05g/L,pH5.0,搅拌速率300r/min。以扫描电镜和能谱分析了优化工艺获得的Ni–P–石墨复合镀层的表面形貌及组成,测试了镀层性能。结果表明,Ni–P–石墨复合镀层中石墨分散均匀,Ni和P的质量分数分别为93.78%和6.22%。与Ni–P合金镀层相比,Ni–P–石墨复合镀层的耐蚀性明显提高,其耐磨性提高了5倍,热处理后复合镀层的显微硬度最大可以达到1336.3HV。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号