首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temperature‐sensitive poly(N‐isopropylacrylamide) hydrogels were successfully synthesized by using poly(ethylene oxide) as the interpenetrating agent. The newly prepared semi‐interpenetrating polymer network (semi‐IPN) hydrogels exhibited much better properties as temperature‐sensitive polymers than they did in the past. Characterizations of the IPN hydrogels were investigated using a swelling experiment, FTIR spectroscopy, and differential scanning calorimetry (DSC). Semi‐IPN hydrogels exhibited a relatively high temperature dependent swelling ratio in the range of 23–28 at room temperature. DSC was used for the determination of the lower critical solution temperature of the semi‐IPN hydrogel. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3032–3036, 2003  相似文献   

2.
A new strategy was used to prepare a semi‐interpenetrating polymer network (semi‐IPN)–like poly(N‐isopropylacrylamide) (PNIPAAm) polymeric hydrogel, consisting of either low (2300) or high (33,000) molecular weight linear PNIPAAm chains and the crosslinked PNIPAAm network. The properties of the resulting PNIPAAm hydrogels were characterized by DSC and SEM as well as their swelling ratios at various temperatures, the deswelling in hot water (48°C), and the oscillating shrinking–swelling properties within small temperature cycles. It was found that the deswelling rate of these semi‐IPN–like PNIPAAm hydrogels was improved if the molecular weight and/or composition of the linear PNIPAAm chains within the semi‐IPN–like PNIPAAm hydrogels were increased. This improved deswelling rate was attributed to the fast response nature of the linear PNIPAAm chains and the increased pore number in the matrix network, which provided numerous water channels for the water to diffuse out during the deswelling process at a temperature above the lower critical solution temperature. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1935–1941, 2003  相似文献   

3.
Semi‐interpenetrating polymer network (semi‐IPN) and fully interpenetrating polymer network (full‐IPN) hydrogels composed of alginate and poly(N‐isopropylacrylamide) were prepared with γ‐ray irradiation. The semi‐IPN hydrogels were prepared through the irradiation of a mixed solution composed of alginate and N‐isopropylacrylamide (NIPAAm) monomer to simultaneously achieve the polymerization and self‐crosslinking of NIPAAm. The full‐IPN hydrogels were formed through the immersion of the semi‐IPN film in a calcium‐ion solution. The results for the swelling and deswelling behaviors showed that the swelling ratio of semi‐IPN hydrogels was higher than that of full‐IPN hydrogels. A semi‐IPN hydrogel containing more alginate exhibited relatively rapid swelling and deswelling rates, whereas a full‐IPN hydrogel showed an adverse tendency. All the hydrogels with NIPAAm exhibited a change in the swelling ratio around 30–40°C, and full‐IPN hydrogels showed more sensitive and reversible behavior than semi‐IPN hydrogels under a stepwise stimulus. In addition, the swelling ratio of the hydrogels continuously increased with the pH values, and the swelling processes were proven to be repeatable with pH changes. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4439–4446, 2006  相似文献   

4.
We prepared a semi‐IPN (interpenetrating network)‐type solid polymer electrolyte (SPE) using poly (ethylene glycol)dimethacrylate (PEGDMA) as a polymer matrix containing a monocomb‐type poly(siloxane‐g‐allyl cyanide) and poly(ethylene glycol)dimethylether (PEGDME) for the lithium secondary battery. The poly(siloxane‐g‐allyl cyanide)s were prepared by a hydrosilation reaction of poly (methyl hydrosiloxane) with allyl cyanide and characterized by 1H NMR and FTIR. The semi‐IPN‐type electrolyte was prepared by thermal curing, and conductivities of samples were measured by impedance spectroscopy using an indium tin oxide (ITO) electrode. The ionic conductivity of the semi‐IPN‐polymer electrolyte was about 1.05 × 10?5 S cm?1 with 60 wt % of the poly(siloxane‐g‐allyl cyanide) and 6.96 × 10?4 S cm?1 with 50 wt % of the PEGDME and 10 wt % of the poly(siloxane‐g‐allyl cyanide) at 30°C. The SEM morphology of the cross section of the semi‐IPN‐polymer electrolyte film was changed from discontinuous network to continuous network as increasing the PEGDME content and decreasing the poly(siloxane‐g‐allyl cyanide) content. The mechanical stability was also enhanced when increasing the PEGDME content. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
Interpenetrating polymer network (IPN) hydrogels based on poly(vinyl alcohol) (PVA) and poly(acrylamide‐co‐sodium methacrylate) poly(AAm‐co‐SMA) were prepared by the semi IPN method. These IPN hydrogels were prepared by polymerizing aqueous solution of acrylamide and sodium methacrylate, using ammonium persulphate/N,N,N1,N1‐tetramethylethylenediamine (APS/TMEDA) initiating system and N,N1‐methylene‐bisacrylamide (MBA) as a crosslinker in the presence of a host polymer, poly(vinyl alcohol). The influence of reaction conditions, such as the concentration of PVA, sodium methacrylate, crosslinker, initiator, and reaction temperature, on the swelling behavior of these IPNs was investigated in detail. The results showed that the IPN hydrogels exhibited different swelling behavior as the reaction conditions varied. To verify the structural difference in the IPN hydrogels, scanning electron microscopy (SEM) was used to identify the morphological changes in the IPN as the concentration of crosslinker varied. In addition to MBA, two other crosslinkers were also employed in the preparation of IPNs to illustrate the difference in their swelling phenomena. The swelling kinetics, equilibrium water content, and water transport mechanism of all the IPN hydrogels were investigated. IPN hydrogels being ionic in nature, the swelling behavior was significantly affected by environmental conditions, such as temperature, ionic strength, and pH of the swelling medium. Further, their swelling behavior was also examined in different physiological bio‐fluids. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 302–314, 2005  相似文献   

6.
Polystyrene cation exchange membranes were prepared by a PVC‐based semi‐interpenetrating polymer network (IPN) method. The reaction behaviors during polymerization and sulfonation in the preparation method were investigated. The prepared membranes were characterized in terms of the physical and electrochemical properties. The membranes exhibited reasonable mechanical properties (tensile strength, 13 MPa, and elongation at break, 52%) for an ion‐exchange membrane with the ratio of polystyrene–divinylbenzene (DVB)/poly(vinyl chloride) (PVC) (RSt‐DVB/PVC) of below 0.9. Fourier transform infrared/attenuated total reflectance, differential scanning calorimetry, and scanning electron microscopy studies revealed the formation of a homogeneous membrane. The resulting membrane showed membrane electrical resistance of 2.0 Ω cm2 and ion‐exchange capacity of 3.0 meq/g dry membrane. The current–voltage (I–V) curves of the membrane show that the semi‐IPN polystyrene membranes can be properly used at a high current density, and that the distribution of cation‐exchange sites in the membrane was more homogenous than that in commercial membranes. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1488–1496, 2003  相似文献   

7.
Amphiphilic semi‐interpenetrating polymer networks (semi‐IPN) hydrogels were prepared by a sequential‐IPN method by acrylic acid graft copolymerization into cationic starch in mild aqueous media of poly(dimethyldiallylammonium chloride). Some main factors were investigated to evaluate the swelling of hydrogels, and the network parameters Mc were given accordingly to elaborate the interaction between polymers. The chemical structure of the resulting hydrogel was confirmed using Fourier transform infrared spectroscopy. The cationic starch‐based semi‐IPN hydrogels achieved a high swelling capacity of 1070 g/g in deionized water and 94 g/g in 0.9 wt % NaCl solution, respectively) and high compressive stress in a high water content. Besides, a different pH‐dependent behavior was found for this semi‐IPN hydrogel. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
In this article, using the non‐solvent induced phase separation process, a new microporous membrane with the semi‐interpenetrating polymer network (semi‐IPN) structure was produced. For this membrane, polydimethylsiloxane (PDMS) polymer is crosslinking and poly(vinylidene fluoride) (PVDF) polymer is linear, by changing the mass ratio of PDMS/PVDF, the structure and the performance of the prepared membranes were studied. The membranes were also investigated by attenuated total reflection‐Fourier transform infrared (ATR‐FTIR), scanning electron microscopy–energy‐dispersive X‐ray spectroscopy, X‐ray diffraction, thermogravimetric analysis, and water contact angle, etc. ATR‐FTIR spectroscopy confirmed the formation of semi‐IPN; compared with the PDMS/PVDF polymer without semi‐IPNs structure, the viscosity of the semi‐IPNs structured casting solution increased, membrane mechanical property increased but its hydrophobicity decreased. Using the resulting membranes for the vacuum membrane distillation desalt of the NaCl solution (30 g/L), 99.9% salt rejection and reasonable flux were obtained. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45792.  相似文献   

9.
A series of organic–inorganic hybrid thermosensitive gels with three different structures were prepared from N‐isopropylacrylamide (NIPAAm), and N, N′‐methylenebisacrylamide (NMBA) and tetraethoxysilane (TEOS) [N‐IPN]; NIPAAm, 3‐(trimethoxysilyl) propyl methacrylate (TMSPMA) as coupling agent and TEOS [NT‐IPN]; and NIPAAm, TMSPMA, and TEOS [NT‐semi‐IPN] by emulsion polymerization and sol–gel reaction in this study. The effect of different gel structures and coupling agent on the swelling behavior, mechanical properties, and morphologies of the present gels was investigated. Results showed that the properties of the gels would be affected by the gel networks such as IPN or semi‐IPN and with or without existence of TMSPMA as the bridge chain between networks. The NT‐semi‐IPN gel had higher swelling ratio and faster diffusion rate because poly(NIPAAm) moiety in the semi‐IPN gels was not restricted by NMBA network. However, the IPN gels such as N‐IPN and NT‐IPN had good mechanical properties and lower swelling ratio, but had a poor thermosensitivity due to the addition of coupling agent, TMSPMA, into the gel system that resulted in denser link between organic and inorganic components. The morphology showed that IPN gels had partial aggregation (siloxane domain) and showed some denser phases. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
Poly(N‐isopropylacrylamide) (PNIPAAm)/poly(ethylene oxide) (PEO) semi‐interpenetrating polymer networks (semi‐IPNs) synthesized by radical polymerization of N‐isopropylacrylamide (NIPAAm) in the presence of PEO. The thermal characterizations of the semi‐IPNs were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dielectric analysis (DEA). The melting temperature (Tm) of semi‐IPNs appeared at around 60°C using DSC. DEA was employed to ascertain the glass transition temperature (Tg) and determine the activation energy (Ea) of semi‐IPNs. From the results of DEA, semi‐IPNs exhibited one Tg indicating the presence of phase separation in the semi‐IPN, and Tgs of semi‐IPNs were observed with increasing PNIPAAm content. The thermal decomposition of semi‐IPNa was investigated using TGA and appeared at around 370°C. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3922–3927, 2003  相似文献   

11.
A series of novel semi‐interpenetrating polymer networks (IPNs) composed of poly[(acrylamide)‐co‐(sodium acrylate)] with varying amounts (5, 10, and 15 wt%) of poly[(vinylsulfonic acid), sodium salt] was synthesized. The semi‐IPN hydrogels were characterized by infrared spectroscopy. The swelling behavior of these IPNs was studied in distilled water/physiological solutions/buffer solutions/salt solutions. As the amount of poly[(vinylsulfonic acid), sodium salt] increased in the network, the swelling capacity of the semi‐IPNs increased considerably. The swelling and diffusion characteristics such as water penetration velocity (v), diffusion exponent (n), and diffusion coefficient (D) were calculated in distilled water, as well as in other physiological solutions. The highest swelling capacity was noted in urea and glucose solutions. The semi‐IPN hydrogels followed non‐Fickian diffusion behavior in water and physiological fluids, whereas Fickian behavior was observed in buffer solutions. The stimuli‐responsive characteristics towards physiological fluids, salt concentration, and temperature of these semi‐IPN hydrogels were also investigated. The swelling behavior of the semi‐IPNs decreased markedly with an increase of the concentration of the salt solutions. Copyright © 2006 Society of Chemical Industry  相似文献   

12.
The state and mobility of water in crosslinked chitosan–polyether semi interpenetrating network (IPN) (cr‐CS–PE semi‐IPN) was studied using differential scanning calorimetry (DSC) and nuclear magnetic resonance (NMR), respectively. The effect of water content on free volume for water in gel network was investigated by positron annihilation lifetime spectroscopy (PALS) and its effect on the diffusion coefficient are discussed as well. The results show that with the increase of water content, the mobility of water molecules and the free volume of hydrogel network are enhanced. In the following free‐volume diffusion equation: D = Aexp(−B/Vf), A and B are not constant but are considered as the functions of water contents. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 449–453, 1999  相似文献   

13.
A semi interpenetrating polymer network (IPN) of carboxymethyl cellulose (CMC) and crosslinked polyacrylic acid (PAA) has been prepared and its water‐sorption capacity has been evaluated as a function of chemical architecture of the IPN, pH, and temperature of the swelling medium. The water uptake potential of the IPNs has also been investigated in inorganic salt containing aqueous solutions and simulated biological fluids. The IPN was characterized by IR spectral analysis, and the network parameters such as average molecular weight between crosslinks (Mc), crosslink density (q), and number of elastically effective chains (Ve) have been evaluated by water‐sorption measurements. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2054–2065, 2004  相似文献   

14.
In this work, semi‐interpenetrating polymer network (s‐IPN) hydrogels of poly(vinyl alcohol) (PVA) with different contents of water‐soluble sulfonated polyester (PES) were obtained by freezing and thawing cycles. The samples were characterized by positron annihilation lifetime spectroscopy (PALS) and differential scanning calorimetry (DSC). PALS was used to determine the average free volume radius through lifetime measures of the ortho‐positronium (o‐Ps). Degree of crystallinity of the PVA/PES hydrogels was evaluated using the melting enthalpy ratios between the samples and the 100% crystalline PVA. The results show that an increase on the PES content leads to a decrease on the degree of crystallinity of the samples, reflecting an increase on the lifetimes (τ3). These structural changes could be interpreted as a result of different polymer‐polymer interactions between PVA and PES in the hydrogels. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

15.
Two semiinterpenetrating polymer networks (semi‐IPNs) based on trihydroxyl methylpropane–polyurethane (T‐PU) or castor oil–polyurethane (C‐PU) were prepared by curing the mixed solution of the polyurethane prepolymer and nitrochitosan (NCH). During the curing process, crosslinking and grafting reaction between the molecules of the PU prepolymer and NCH occurred, because of the high reactivity of remaining hydroxyl groups in the NCH with ? NCO groups of PU. The structure of the original semi‐IPN sheets and the sheets treated with acetone were studied by infrared, 13C‐NMR, scanning electron microscopy, and dynamic mechanical analysis, showing interpenetration of NCH molecules into the PU networks. When nitrochitosan content (CNCH) was lower than 10 wt %, the semi‐IPN sheets T‐PU and C‐PU had higher density and tensile strength (σb) than the systems with CNCH more than 20%. The trihydroxymethyl propane‐based PU reacted more readily with nitrochitosan to form the semi‐IPNs than castor oil‐based PU. The semi‐IPN coatings T‐PU and C‐PU were used to coat cellophane, resulting in intimate interfacial bonding. The mechanical strength and water resistivity of the cellophane coated with T‐PU coating were improved remarkably. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 3109–3117, 2001  相似文献   

16.
Amino semitelechelic poly(N‐isopropylacrylamide) (PNIPAAm) was prepared by radical polymerization with aminoethanethiol hydrochloride as a chain‐transfer agent. Semi‐interpenetrating polymer network (semi‐IPN) hydrogels, composed of alginate and amine‐terminated PNIPAAm, were prepared by crosslinking with calcium chloride. From the swelling behaviors of semi‐IPNs at various pH's and Fourier transform infrared spectra at high temperatures, the formation of a polyelectrolyte complex was confirmed from the reaction between carboxyl groups in alginate and amino groups in modified PNIPAAm. Semi‐IPN hydrogels reached an equilibrium swelling state within 24 h. The water state in hydrogels, investigated by differential scanning calorimetry, showed that sample CAN55 [alginate/PNIPAAm (w/w) = 50/50] exhibited the lowest equilibrium water content and free water content among the hydrogels tested, which was attributed to its more compact structure compared to other samples and the high content of interchain bonding within the hydrogels. Alginate/PNIPAAm semi‐IPN hydrogels exhibited a reasonable sensitivity to the temperature, pH, and ionic strength of swelling medium. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1128–1139, 2002  相似文献   

17.
Resol was solution blended with vinyl acetate–2‐ethylhexylacrylate (VAc–EHA) resin in aqueous medium, in varying weight fractions, with hexamethoxymethylmelamine (HMMM) as crosslinker, and data was compared with a control. The present work was aimed at getting an optimum combination of tensile strength, dynamic mechanical strength, impact strength, and toughness by synthesis of an interpenetrating network (IPN) of the resins. The control gave a semi‐IPN system, in which the resol crosslinked, while the acrylic did not, whereas the blend, where HMMM was the crosslinker, gave a full IPN system. Full IPNs of the resol/VAc–EHA system had higher moduli and ultimate tensile strength than the semi‐IPNs. Dynamic mechanical study showed that full IPN systems have higher Tg values than semi‐IPN systems. The impact strength increases with increasing proportions of VAc–EHA copolymer. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1765–1771, 2003  相似文献   

18.
A semi‐interpenetrating polymer network (semi‐IPN) of polyethylene glycol (PEG) and crosslinked poly[(2‐hydroxyethyl methacrylate)‐co‐acrylonitrile] was prepared and adsorption of bovine serum albumin (BSA) on the IPN surfaces was investigated. The dynamic nature of the adsorption process was studied, and the effects of various experimental factors such as pH and ionic strength on the adsorption isotherms of BSA were investigated. Various kinetic parameters, such as the adsorption coefficient, rate constant for adsorption and penetration rate constants, were calculated. For assessment of in vitro blood compatibility of the IPN surfaces, water sorption, blood clot formation tests and percent hemolysis measurements were performed. Copyright © 2004 Society of Chemical Industry  相似文献   

19.
Semi‐interpenetrating polymer networks (semi‐IPNs) composed of a dicyanate resin and a poly(ether sulfone) (PES) were prepared, and their curing behavior and mechanical properties were investigated. The curing behavior of the dicyanate/PES semi‐IPN systems catalyzed by an organic metal salt was analyzed. Differential scanning calorimetry was used to study the curing behavior of the semi‐IPN systems. The curing rate of the semi‐IPN systems decreased as the PES content increased. An autocatalytic reaction mechanism was used to analyze the curing reaction of the semi‐IPN systems. The glass‐transition temperature of the semi‐IPNs decreased with increasing PES content. The thermal decomposition behavior of the semi‐IPNs was investigated. The morphology of the semi‐IPNs was investigated with scanning electron microscopy. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1079–1084, 2003  相似文献   

20.
Tough hydrogels receive continuous attention because of their promising applications in many fields. Herein, tough hydrogels of poly (N,N‐dimethylacrylamide) (PDMAA)/alginate (SA) are prepared, with interpenetrating network (IPN) and of PDMAA/chitosan (CS) with semi‐IPN microstructure, respectively. The toughening of the hydrogel by incorporating natural polymers is studied by compressing tests and dynamic mechanical analyses. Moreover, cyclic load–unload compressing of the two types of hydrogels are performed at low strains and under relatively high strains, in order to compare their strength and anti‐fatigue properties. The results indicate that the mechanical strength can be markedly improved upon addition of the natural polymers, and the IPN hydrogel of PDMAA/SA reveals much higher mechanical performances but is less stable. However, the semi‐IPN hydrogel of PDMAA/CS displays excellent anti‐fatigue stability, but with relatively low strength. Swelling tests, scanning electron microscopy, and Fourier transform infrared spectroscopy are carried out to study the microstructures of the hydrogels, which are carefully analyzed to understand the difference in mechanical performances of those hydrogels. The results suggest that the presence of sacrificial unit and higher chain density in the IPN are helpful for toughening hydrogels, while the semi‐IPN network is beneficial to improve the energy dissipation efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号