首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work the thermal stability of polymeric additives for the improvement of rheological behavior of mineral lubricating oils was investigated. The systems studied comprised methyl methacrylate (MMA)/dodecyl methacrylate (DDMA)/octadecyl methacrylate (ODMA) and styrene (Sty)/DDMA/ODMA terpolymers. The composition of the terpolymers was determined by the 1H nuclear magnetic resonance spectroscopy and molar mass distribution by the size exclusion chromatography. The thermal degradation of terpolymers was studied by the thermogravimetric analysis. Sty/DDMA/ODMA terpolymers exhibited an improved thermal stability in comparison with MMA/DDMA/ODMA terpolymers of the corresponding compositions. Thus, the temperatures of 50% weight loss were found to be 313°C and 363°C for MMA terpolymer and Sty terpolymer, respectively, where x (MMA) = x (Sty) = 30 mol%.  相似文献   

2.
Low conversion kinetics of terpolymerization of N,N‐dimethylaminoethyl methacrylate (DMAEM) and dodecyl methacrylate (DDMA) with methyl methacrylate (MMA) or styrene (ST) was investigated. Reactions were performed at 70°C, in toluene solutions, using peroxide initiator. The interdependence between terpolymer and monomer feed composition was successfully described by Alfrey‐Goldfinger equation and the unitary, binary, and ternary azeotropes were calculated. In MMA‐containing system, the wide pseudoazeotropic region with existence of true azeotropic point was observed and experimentally confirmed at the DMAEM:MMA:DDMA molar ratio of 56:41:3. In the ST‐containing system compositional heterogeneity was significant, more than 10 mol%. Required copolymerization reactivity ratios were determined by linear and nonlinear methods. The glass transition temperatures of synthesized terpolymers are found to be between those of the corresponding homopolymers and relative to their content. Increase in the MMA or ST contents and decrease in the DDMA content in terpolymers results in an increase in their glass transition temperatures. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

3.
Free radical copolymerization kinetics of 2‐(diisopropylamino)ethyl methacrylate (DPA) with styrene (ST) or methyl methacrylate (MMA) was investigated and the corresponding copolymers obtained were characterized. Polymerization was performed using tert‐butylperoxy‐2‐ethylhexanoate (0.01 mol dm?3) as initiator, isothermally (70 °C) to low conversions (<10 wt%) in a wide range of copolymer compositions (10 mol% steps). The reactivity ratios of the monomers were calculated using linear Kelen–Tüd?s (KT) and nonlinear Tidwell–Mortimer (TM) methods. The reactivity ratios for MMA/DPA were found to be r1 = 0.99 and r2 = 1.00 (KT), r1 = 0.99 and r2 = 1.03 (TM); for the ST/DPA system r1 = 2.74, r2 = 0.54 (KT) and r1 = 2.48, r2 = 0.49 (TM). It can be concluded that copolymerization of MMA with DPA is ideal while copolymerization of ST with DPA has a small but noticeable tendency for block copolymer building. The probabilities for formations of dyad and triad monomer sequences dependent on monomer compositions were calculated from the obtained reactivity ratios. The molar mass distribution, thermal stability and glass transition temperatures of synthesized copolymers were determined. Hydrophobicity of copolymers depending on the composition was determined using contact angle measurements, decreasing from hydrophobic polystyrene and poly(methyl methacrylate) to hydrophilic DPA. Copolymerization reactivity ratios are crucial for the control of copolymer structural properties and conversion heterogeneity that greatly influence the applications of copolymers as rheology modifiers of lubricating oils or in drug delivery systems. © 2015 Society of Chemical Industry  相似文献   

4.
n‐Butyl methacrylate/styrene/n‐butyl acrylate (BMA/ST/BA) high‐temperature starved‐feed solution semibatch copolymerization and terpolymerization experiments with varying monomer feed composition, final polymer content, monomer feed time, and reaction temperature were carried out. A comprehensive mechanistic terpolymerization model implemented in PREDICI includes methacrylate depropagation, acrylate backbiting, chain scission, and macromonomer propagation, as well as penultimate chain‐growth and termination kinetics. The generality of the model was verified by comparison with terpolymerization data sets from two laboratories that demonstrate the impact of high‐temperature secondary reactions on polymerization rate and polymer molecular weight. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

5.
Ternary copolymerization reactions of N-acryloyloxyphthalimide (NAP) or N-methacryloyloxyphthalimide (NMP) and acrylonitrile with methyl acrylate or methyl methacrylate were carried out in solution at 60°C in the presence of a free radical initiator. Experimental terpolymerization data agree well with calculations based on the Alfrey-Goldfinger equation. The determination of unitary, binary, and ternary azeotropies of the various systems studied was easily handled by a computer program. The results show that there is no ternary azeotropic composition for any terpolymer system studied. Selective unitary and binary azeotropic compositions were polymerized and the results show good agreement between the theoretical and experimental terpolymer composition in each case. The estimation of terpolymer compositions was carried out by 1H NMR spectroscopy.  相似文献   

6.
Ternary copolymerizations of tri-n-butyltin 4-acryloyloxybenzoate (ABTB) with acrylonitrile (AN) and alkyl acrylates [methyl (MA), ethyl (EA) or butyl acrylate (BA)], methyl methacrylate (MMA) or styrene (ST) were carried out in solution at 70°C in the presence of free radical initiator. Experimental terpolymerization data agreed well with calculations based on the Alfrey-Goldfinger equation. The determination of unitary, binary and ternary azeotropies of various systems studied was easily handled by a computer program. The results obtained show that there is no ternary azeotropic composition for any terpolymer, system studied. Selective unitary and binary azeotropic compositions were polymerized and the results obtained show good agreement between the theoretical and experimental terpolymer composition for each case.  相似文献   

7.
BACKGROUND: The properties of copolymers depend strongly on their composition; therefore in order to tailor some for specific applications, it is necessary to control their synthesis, and, in particular, to know the reactivity ratios of their constituent monomers. Free radical copolymerizations of N,N‐dimethylaminoethyl methacrylate (DMAEM) with styrene (ST) and methyl methacrylate (MMA) in toluene solution using 1‐di(tert‐butylperoxy)‐3,3,5‐trimethylcyclohexane as initiator at 70 °C were investigated. Monomer reactivity ratios were determined for low conversions using both linear and nonlinear methods. RESULTS: For the DMAEM/ST system the average values are r1 = 0.43 and r2 = 1.74; for the DMAEM/MMA system the average values are r1 = 0.85 and r2 = 0.86. The initial copolymerization rate, Rp, for DMAEM/ST sharply decreases as the content of ST in the monomer mixture increases up to 30 mol% and then attains a steady value. For the DMAEM/MMA copolymerization system the composition of the feed does not have a significant influence on Rp. The glass transition temperatures (Tg) of the copolymers were determined calorimetrically and calculated using Johnston's sequence length method. A linear dependence of Tg on copolymer composition for both systems is observed: Tg increases with increasing ST or MMA content. CONCLUSION: Copolymerization reactivity ratios enable the design of high‐conversion processes for the production of copolymers of well‐defined properties for particular applications, such as the improvement of rheological properties of lubricating mineral oils. Copyright © 2009 Society of Chemical Industry  相似文献   

8.
N.T. McManus 《Polymer》2004,45(17):5837-5845
The free radical initiated terpolymerization of butyl acrylate (BA), methyl methacrylate (MMA) and alpha methyl styrene (AMS) has been examined. Kinetic studies focused on elevated reaction temperatures (115 and 140 °C). The studies were made over the full conversion range and examined the effect of reaction temperature, feed composition and initiator level on reaction rates. The composition of terpolymer products and their molecular weights were also analyzed with respect to monomer conversion levels.  相似文献   

9.
In this study, polymethacrylate polymers were synthesized by free‐radical polymerization for use as pour point depressants in lubricant oil, and their low‐temperature properties were investigated. Four methacrylate monomers were synthesized by the esterification of methyl methacrylate (MMA) with four kinds of fatty alcohols. The purification step was performed to prepare the pure monomers. Two polymerization experiments were carried out with four kinds of methacrylate monomers obtained previously and MMA. Copolymers, which were made from one kind of monomer and MMA, and terpolymers, which were made from two kinds of monomers and MMA, were prepared. The molecular structures of the synthesized methacrylate monomers and polymethacrylate polymers were verified by 1H‐NMR, and the molecular weight data were obtained by gel permeation chromatography. The pour points of the base oils containing 0.1 wt % polymethacrylate polymers were measured according to ASTM D 97‐93. The pour points of most base oils containing each polymer decreased compared to that of the pure base oil. Particularly, poly(dodecyl methacrylate‐co‐hexadecyl methacrylate‐co‐methyl methacrylate), made of dodecyl methacrylate, hexadecyl methacrylate, and MMA at a molar ratio of 3.5 : 3.5 : 3, showed the best low‐temperature properties. This terpolymer dropped the pour point of the base oil by as much as 23°C, and its yield was 93.5%. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
Well‐defined methyl methacrylate (MMA) and 2‐(trimethylsiloxy)ethyl methacrylate (Pro‐HEMA) copolymers were prepared by atom‐transfer radical polymerization(ATRP), using CuCl/2,2′‐bipyridine as catalytic system and p‐toluenesulfonyl chloride as initiator. ATRP process of MMA and Pro‐HEMA was monitored by 1H NMR, and the kinetic curves of the MMA/Pro‐HEMA copolymerization were plotted in terms of the 1H NMR data. At low content of Pro‐HEMA in the feed composition, the copolymerization can be well controlled with the molecular weight, polydispersity and the monomer distribution in the copolymer chain. With the increase of Pro‐HEMA content in the feed mixture, the composition of the final copolymer deviates from the composition of the feed mixture gradually, and gradient copolymers of MMA/Pro‐HEMA can be obtained. Through the hydrolysis process, well‐defined copolymers of MMA/HEMA were obtained from poly(MMA/Pro‐HEMA). Copyright © 2003 Society of Chemical Industry  相似文献   

11.
The target of the research is to examine influence of a polymerization process and monomer ratio on structures and compositions of phases in an emulsion copolymerization of n‐butyl acrylate (BA) and methyl methacrylate (MMA). Emulsion copolymerizations are performed using three different BA/MMA weight ratios (60%/40%, 50%/50%, and 40%/60%) and two different processes, statistical batch and seeded emulsion polymerizations. Phase structures, monomer compositions, and morphological stabilities of copolymers are investigated by differential scanning calorimetry, 1H‐NMR, and scanning electron microscopy. Gel permeation chromatography is used to follow the changes in the molar mass distribution during syntheses. The gel content and backbiting level of end products are measured by extraction and 13C‐NMR, respectively. Copolymerizations give products with a bimodal molar mass distribution and three or two separate phases having different BA/MMA compositions. The morphological stability of particles decreases with the increasing BA fraction in the feed. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41467.  相似文献   

12.
The emulsion terpolymerization of methyl methacrylate (MMA), ethyl acrylate (EA), and acrylic acid (AA) was carried out under a nitrogen atmosphere at 70°C. The final terpolymer conversion was determined gravimetrically. The synthesized MMA–EA–AA terpolymer was characterized with 1H‐NMR spectroscopy, thermal analysis, and gel permeation chromatography. Glass‐transition temperatures of the MMA–EA–AA terpolymer were determined with a differential scanning calorimeter. Ethylene–propylene–diene monomer rubber (EPDM)/poly(vinyl chloride) (PVC) blends were prepared with different blend ratios (10/90, 20/80, 30/70, 40/60, and 50/50) in the presence and absence of MMA–EA–AA as a compatibilizer. The morphology of those blends was examined with the aid of a scanning electron microscope. The scanning electron micrographs in the presence of the MMA–EA–AA terpolymer illustrated the disappearance of the macroscale phase separation of EPDM/PVC blends as a result of the incorporation of MMA–EA–AA into that blend, indicating an improvement of the homogeneity. The mechanical properties of the EPDM/PVC blend films and the dielectric properties of the melt blends were investigated. The swelling behavior of the cured blends in the brake fluid was also discussed. The results illustrated that the mechanical properties, the weight swelling values, and the dielectric constant values showed linear behavior versus the blend ratios after the incorporation of the terpolymer. However, those values showed deviations from linearity in the absence of the terpolymer. That, in turn, ensured the results obtained with the scanning electron microscope. The results reveal that the MMA–EA–AA terpolymer prepared can be used successfully to improve the homogeneity of EPDM/PVC blends used in hose and oil seal applications. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
The grafting of the methyl methacrylate (MMA) monomer onto natural rubber using potassium persulfate as an initiator was carried out by emulsion polymerization. The rubber macroradicals reacted with MMA to form graft copolymers. The morphology of grafted natural rubber (GNR) was determined by transmission electron microscopy and it was confirmed that the graft copolymerization was a surface‐controlled process. The effects of the initiator concentration, reaction temperature, monomer concentration, and reaction time on the monomer conversion and grafting efficiency were investigated. The grafting efficiency of the GNR was determined by a solvent‐extraction technique. The natural rubber‐g‐methyl methacrylate/poly(methyl methacrylate) (NR‐g‐MMA/PMMA) blends were prepared by a melt‐mixing system. The mechanical properties and the fracture behavior of GNR/PMMA blends were evaluated as a function of the graft copolymer composition and the blend ratio. The tensile strength, tear strength, and hardness increased with an increase in PMMA content. The tensile fracture surface examined by scanning electron microscopy disclosed that the graft copolymer acted as an interfacial agent and gave a good adhesion between the two phases of the compatibilized blend. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 428–439, 2001  相似文献   

14.
The newly designed methacrylic monomer series 4‐phthalimidocyclohexyl methacrylate (PCMA ), 4‐hexahydrophthalimidocyclohexyl methacrylate (HPCMA) and 4‐hexahydro‐3,6‐methanophthalimidocyclohexyl methacrylate (HMPCMA) were synthesized. Their homopolymers and methyl methacrylate (MMA) based copolymer series were polymerized by free‐radical polymerization. The copolymer compositions were characterized using 1H NMR spectra. The monomer reactivity ratios were calculated employing the Fineman?Ross (F‐T) and Kelen?Tüdös (K‐T) methods at low conversion. The values of r1 and r2 obtained by the F‐T and K‐T methods appear to be in close agreement (their average values are r1 = 1.3061 and r2 = 0.7336 for poly(PCMA‐co‐MMA), r1 = 1.5169 and r2 = 0.6840 for poly(HPCMA‐co‐MMA), r1 = 1.7748 and r2 = 0.5664 for poly(HMPCMA‐co‐MMA)) . The thermal stabilities and thermomechanical characteristics of the homopolymer and copolymer series were investigated by differential scanning calorimetry, thermogravimetric analysis and dynamic mechanical thermal analysis. © 2018 Society of Chemical Industry  相似文献   

15.
A copolymer of dodecyl methacrylate/styrene (DMA/St) containing the amidine functionality was synthesized and characterized. The one‐step solution copolymerization process was carried out using a mixed solvent, high temperature, and a functional azo initiator, 2,2′‐azobis[N,N′‐dimethylene isobutyramidine]. Copolymers with different compositions (DMA/St 10/1 to 1/2), molecular weight (Mn 2000–9000), and functionality (1.0–2.0) were prepared and characterized by NMR, FTIR, DSC, and elemental analysis. The molecular weight of the copolymers could be controlled by the amount of the initiators. Copolymer composition depends on the feed molar ratio of comonomers. The amidine functionality of the copolymers was determined by elemental analysis. It was found that 72% of the polymer chain has one functionality. The Tg of the copolymer depends on the feed molar ratio. This copolymer could be used as a potential dispersant for lubricant oil. Published 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1684–1691, 2002  相似文献   

16.
The butyl acrylate (BA)/methyl methacrylate (MMA), and glycidyl methacrylate (GMA) composite copolymer latex was synthesized by seeded emulsion polymerization technique taking poly(methyl methacrylate) (PMMA) latex as the seed. Four series of experiments were carried out by varying the ratio of BA : MMA (w/w) (i.e. 3.1 : 1, 2.3 : 1, 1.8 : 1, and 1.5 : 1) and in each series GMA content was varied from 1 to 5% (w/w). The structural properties of the copolymer were analyzed by FTIR, 1H‐, and 13C‐NMR. Morphological characterization was carried out using transmission electron microscopy (TEM). In all the experiments, monomer conversion was ~99% and final copolymer composition was similar to that of feed composition. The incorporation of GMA into the copolymer chain was confirmed by 13C‐NMR. The glass transition temperature (Tg) of the copolymer latex obtained from the differential scanning calorimetry (DSC) curve was comparable to the values calculated theoretically. With increase in GMA content, particles having core‐shell morphology were obtained, and there was a decrease in the particle size as we go from 2–5% (w/w) of GMA. The adhesive strength of the latexes was found to be dependent on the monomer composition. With increase in BA : MMA ratio, the tackiness of the film increased while with its decrease the hardness of the film increased. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
The free radical terpolymerization of indene (In), methyl methacrylate (MMA) and acrylonitrile (AN) has been investigated. The rate of polymerization of all the binary systems involved has been measured dilatometrically for the homogeneous polymerization. The reactivity ratios of the three binary systems were calculated and were found to be equal to 0.031 and 0.397 for In/AN copolymers and 0.02 and 3.82 for In/MMA copolymers and finally 0.152 and 1.20 for AN/MMA copolymers. The rate of terpolymerization in bulk has been measured as well as the relationship between the monomer mixture composition and the obtained terpolymer in order to construct the compositional triangle. Also the effect of initiator concentration on the rate of terpolymerization was investigated. The activation energy of terpolymerization was determined. The terpolymers were characterized by spectral and thermo-gravimetric analyses. The data indicates that polyindene improves the thermal stability of the prepared terpolymers.  相似文献   

18.
Here, nanocomposite particles with three domains including magnetite nanoparticles, poly(N‐octadecyl methacrylate) (PODMA) or poly(N‐octadecyl methacrylate‐co‐1‐vinylimidazole) (P(ODMA‐co‐VIMZ)), and gold nanoparticles were prepared. Fe3O4 nanoparticles with narrow particle size distribution were prepared through a synthetic route in an organic phase in order to achieve good control of the size and size distribution and prevent their aggregation during their preparation. These magnetite nanoparticles, ~ 5 nm in size, were then encapsulated and well‐dispersed in PODMA and P(ODMA‐co‐VIMZ) matrices via a miniemulsion polymerization process to obtain the corresponding nanocomposite particles. The results revealed that Fe3O4 nanoparticles were encapsulated and did not migrate towards the monomer/water interface during polymerization. The resulting latex was used as a precursor for the adsorption of Au3+ ions on the surface of the polymeric particles and subsequent reduction to produce Fe3O4/P(ODMA‐co‐VIMZ)/Au nanocomposite particles. The morphology of the particles from each step was fully characterized by TEM and AFM, and the results of DLS analysis showed their size and size distribution. Measurement of magnetic properties illustrated the superparamagnetic characteristic of the products and it was observed that the encapsulation process and deposition of gold had no effect on the magnetic properties of the resulting particles. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
A new iodine‐containing methacrylate monomer, 3,4,5‐triiodobenzoyloxyethyl methacrylate (TIBEM), was synthesized by coupling 2‐hydroxyethyl methacrylate (HEMA) with 3,4,5‐triiodobenzoic acid. The monomer was characterized by 1H nuclear magnetic resonance, infrared (IR), and ultraviolet spectra. Homopolymerization and copolymerization of the monomer with methyl methacrylate (MMA) were carried out using 2,2′‐azobis isobutyronitrile as the initiator. A terpolymer of TIBEM, MMA, and HEMA was also synthesized. The copolymers were characterized by IR, gel permeation chromatography, differential thermal analysis, and thermogravimetric analysis (TGA). High molecular weight polymers were produced with MMA at different feed compositions of TIBEM. The polymers were found to be freely soluble in common solvents for acrylic polymers. TGA showed little decomposition of the copolymer below 280°C. Copolymers showed good radiopacity at 25 wt % of TIBEM in the feed. These copolymers could find applications in medical and dental areas where radiopacity is a desirable feature of the implants. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2580–2584, 2003  相似文献   

20.
d ‐Limonene (Lim) is a renewable monoterpene derived from citrus fruit peels. We investigated it for use as part of a more sustainable polymer formulation. The bulk free‐radical terpolymerization of n‐butyl acrylate (BA)/butyl methacrylate (BMA)/Lim was carried out at 80°C with benzoyl peroxide as the initiator. The terpolymerization was studied at various initial BA/BMA/Lim molar ratios, and the products were characterized for conversion, terpolymer composition, molecular weight, and glass‐transition temperature. Lim was observed to undergo a significant degradative chain‐transfer reaction, which greatly influenced the polymerization kinetics. The rate of polymerization, final conversion, and polymer molecular weight were all significantly reduced because of the presence of Lim. Nonetheless, polymers with relatively high weight‐average molecular weights (20,000–120,000 Da) were produced. The terpolymer composition was well predicted with the reactivity ratios estimated for each of the three copolymer subsystems. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42821.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号