首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Different carboxylic acid derivatives of 2,2‐dinitropropane‐1,3‐diol (DNPD) and 2,2‐bis(azidomethyl)propane‐1,3‐diol (BAMP) were synthesized to investigate their suitability as energetic plasticizers. The syntheses were carried out using acyl chlorides of acetic, propionic, and butyric acid. The obtained products were characterized by elemental analysis, NMR, and IR spectroscopy. The energetic properties of the synthesized compounds were calculated on the basis of the computed heats of formation at the CBS‐4M level of theory using the EXPLO5 version 6.02 computer code. Investigations of physical stabilities were carried out using BAM drop hammer and friction tester. Low and high temperature behavior was determined by differential scanning calorimetry (DSC). The energetic and physical properties of the synthesized compounds were compared to the literature known energetic plasticizers N‐butyl nitratoethylnitramine (BuNENA) and diethylene glycol bis(azidoacetate) ester (DEGBAA). For analyzing the plasticizing abilities, mixtures of glycidyl azide polymer (GAP) and poly(3‐nitratomethyl‐3‐methyloxetan) (polyNIMMO) were prepared with both propionyl based compounds in different ratios and investigated regarding their glass transition temperatures and viscosity. Both compounds showed plasticizing effects in the range of BuNENA.  相似文献   

2.
The heterofunctional condensation reaction of 1,4‐bis(phenyldichlorosilyl)benzene with dihydroxydiphenylsilane at a 1:4 ratio of initial compounds in the presence of pyridine was investigated and tetrakis(hydroxydiphenylsiloxy)‐1,4‐bis(phenylsilyl)benzene was obtained. The heterofunctional condensation of the tetrakis(hydroxydiphenylsiloxy)‐1,4‐bis(phenylsilyl)benzene with organotrichlorosilanes at a 1:2 ratio of initial compounds in the presence of pyridine produced dichloro‐containing arylenecyclosiloxanes. The dichloro‐containing arylenecyclosiloxanes were obtained in one stage by successive heterofunctional condensation of 1,4‐bis(dichlorophenylsilyl)benzene with dihydroxydiphenylsilane and organotrichlorosilanes in a 1:4:2 ratio in the presence of pyridine. It was established that the yields of dichloro‐containing products were lower. Hydrolysis of dichloroarylenecyclosiloxanes in a neutral condition produced corresponding dihydroxy compounds. Heterofunctional polycondensation of dicloro(dihydroxy)arylenecyclosiloxanes with α,ω‐dihydroxy(bisdimethylamino)dimethylsiloxanes was used to obtain arylenecyclosiloxane‐dimethylsiloxane copolymers. Thermogravimetric, thermomechanical, and roentgenographic investigations of the synthesized copolymers were carried out. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 3142–3148, 2001  相似文献   

3.
N‐Methyl‐bis‐(1,2,3,4‐tetrahydroisoquinolinium) analogues derived from AG525 (1,1′‐(propane‐1,3‐diyl)‐bis‐(6,7‐dimethoxy‐2‐methyl‐1,2,3,4‐tetrahydroisoquinoline)) stereoisomers and tetrandrine, a rigid bis‐(1,2,3,4‐tetrahydroisoquinoline) analogue with an S,S configuration, were synthesized and tested for their affinity for small‐conductance calcium‐activated potassium channel (SK/KCa2) subtypes using radioligand binding assays. A significant increase in affinity was observed for the quaternized analogues over the parent 1,2,3,4‐tetrahydroisoquinoline compounds. Interestingly, the impact of stereochemistry was not the same in the two groups of compounds. For quaternized analogues, affinities of S,S and R,R isomers for SK2 and SK3 channels were similar and in both cases higher than that of the meso derivative. Among the bis‐tetrahydroisoquinoline compounds, the S,S isomers exhibited high affinity, while the R,R and meso isomers had similarly lower affinities. Furthermore, the SK2/SK3 selectivity ratio was slightly increased for quaternized analogues. Bis‐(1,2,3,4‐tetrahydroisoquinolinium) represents a new scaffold for the development of high‐affinity ligands for SK channel subtypes.  相似文献   

4.
Pyromellitic dianhydride (1,2,4,5‐benzenetetracarboxylic acid 1,2,4,5‐dianhydide) was reacted with L ‐valine in a mixture of acetic acid and pyridine (3:2) at room temperature, and then was refluxed at 90–100 °C, N,N′‐(pyromellitoyl)‐bis‐L ‐valine diacid was obtained in quantitative yield. The imide–acid was converted to N,N′‐(pyromellitoyl)‐bis‐L ‐valine diacid chloride by reaction with thionyl chloride. Rapid and highly efficient synthesis of a number of poly(amide–imide)s was achieved under microwave irradiation using a domestic microwave oven by polycondensation of N,N′‐(pyromellitoyl)‐bis‐L ‐valine diacid chloride with six different derivatives of 5,5‐disubstituted hydantoin compounds in the presence of a small amount of a polar organic medium that acts as a primary microwave absorber. A suitable organic medium was o‐cresol. The polycondensation proceeded rapidly, compared with conventional melt polycondensation and solution polycondensation and was almost completed within 8 min, giving a series of poly(amide–imide)s with inherent viscosities in the range 0.15–0.36 dl g?1. The resulting poly(amide–imide)s were obtained in high yield and are optically active and thermally stable. All of the above compounds were fully characterized by Fourier‐transform infrared (FT‐IR) spectroscopy, elemental analysis, inherent viscosity (ηinh) measurements, solubility testing and specific rotation measurements. The thermal properties of the poly(amide–imide)s were investigated by using thermogravimetric analysis. Copyright © 2004 Society of Chemical Industry  相似文献   

5.
The clarifying effect of using bis‐oxalamide compounds on linear low density polyethylene (LLDPE) has been investigated for the first time. It was demonstrated that the haze of a commercial LLDPE resin, DOWLEX? 2045G, can be reduced up to 50% by adding 0.2 wt % of a bis‐oxalamide clarifying agent. The investigations on the crystalline morphology revealed that the density of spherulite cores increased with increasing concentration of bis‐oxalamide N5. Through an investigation of structure‐property relationships based on the tunable bis‐oxalamide structure, it was demonstrated that the combination of linear alkyl core and cyclohexyl pendant groups showed the best clarification. The interactions of clarifying molecules were simulated using dynamic molecular simulation. The simulation suggested that the rigidity of the core functionality played a role on the hydrogen bonding in the intermolecular network, which may contribute to the macroscopic clarification performance. POLYM. ENG. SCI., 58:142–149, 2018. © 2017 Society of Plastics Engineers  相似文献   

6.
The preparation of new compounds, 1,1‐bis[4‐(2‐(4,4‐dimethyl‐1,3‐oxazolyl))phenyl]ethanol and a new symmetrically disubstituted 1,1‐diphenylethylene derivative, 1,1‐bis[4‐(2‐(4,4‐dimethyl‐1,3‐oxazolyl))phenyl]ethylene, is described. 1,1‐Bis[4‐(2‐(4,4‐dimethyl‐1,3‐oxazolyl))phenyl]ethylene was utilized as a dioxazolyl initiator precursor for the polymerization of styrene by atom transfer radical polymerization (ATRP) methods to produce α‐bis(oxazolyl) polystyrene. The kinetic study of the polymerization process indicated that the free radical polymerization reaction for the preparation of α‐bis(oxazolyl) polystyrene follows first‐order rate kinetics with respect to monomer consumption. α,ω‐Tetrakis(oxazolyl) polystyrene was prepared by a new, in situ, controlled/living, post‐ATRP chain‐end‐functionalization reaction which involves the direct addition of 1,1‐bis[4‐(2‐(4,4‐dimethyl‐1,3‐oxazolyl))phenyl]ethylene to the ω‐terminus of the α‐bis(oxazolyl) polystyrene derivative, without the isolation and purification of the polymeric precursor. α‐Bis(carboxyl) and α,ω‐tetrakis(carboxyl) polystyrene derivatives were obtained by the quantitative chemical transformation of the oxazoline groups of the respective aromatic oxazolyl chain‐end‐functionalized polystyrene derivatives to the aromatic carboxyl groups. The organic precursor compounds, the dioxazolyl‐functionalized 1,1‐diphenylethylene derivative and the functionalized polymers were characterized using 1H NMR and 13C NMR spectrometry and Fourier transform infrared spectroscopy, size‐exclusion and thin‐layer chromatography and non‐aqueous titration measurements. © 2014 Society of Chemical Industry  相似文献   

7.
Bulk reactions of phenolic compounds (bisphenol‐A and α,ω‐diphenol oligosulfone) or thiols (thiophenol and bis(4‐mercaptophenyl)sulfide) with bisoxazoline coupling agents, namely 2,2'‐(1,3‐phenylene)bis(2‐oxazoline) ( mbox ), 2,2'‐(1,4‐phenylene)bis(2‐oxazoline) ( pbox ), and 2,2'‐(2,6‐pyridylene)bis(2‐oxazoline) ( pybox ), were carried out in the bulk at 140–240°C. The reactions were followed by viscosimetry, size exclusion chromatography, and 1H‐ and 13C‐NMR spectroscopy. The phenol/bisoxazoline bulk reactions at 240°C required the presence of sodium methoxide catalyst. Bisoxazoline pybox gave the best results in this case. Thiol and dithiol/bisoxazoline reactions were faster and did not require any catalyst. High‐molar‐mass polymers were obtained within 5 min at 200°C while using bis(4‐mercaptophenyl)sulfide (BMPS) and any of the bisoxazolines. The NMR spectra of model compounds and polymers were fully assigned, showing that the oxazoline/phenol and oxazoline/thiophenol (tph) polyaddition reactions proceed in the expected way, without any noticeable side reaction. All polymers were amorphous and displayed good thermal stability. Bisoxazolines were also used as coupling agents for the preparation of copolymers of BMPS and α,ω‐dicarboxy polyamide‐12 and for the preparation of polysulfone‐polyamide‐12 block copolymers. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Pyromellitic dianhydride (1,2,4,5‐benzenetetracarboxylic acid 1,2,4,5‐dianhydide) (1) was reacted with L‐phenylalanine (2) in a mixture of acetic acid and pyridine (3 : 2) at room temperature, then was refluxed at 90–100°C and N,N′‐(Pyromellitoyl)‐bis‐L ‐phenylalanine diacid (3) was obtained in quantitative yield. The imide‐acid (3) was converted to N,N′‐(Pyromellitoyl)‐bis‐L ‐phenylalanine diacid chloride (4) by reaction with thionyl chloride. Rapid and highly efficient synthesis of poly(amide‐imide)s (6a–f) was achieved under microwave irradiation by using a domestic microwave oven from the polycondensation reactions of N,N′‐(Pyromellitoyl)‐bis‐L ‐phenylalanine diacid chloride (4) with six different derivatives of 5,5‐disubstituted hydantoin compounds (5a–f) in the presence of a small amount of a polar organic medium that acts as a primary microwave absorber. Suitable organic media was o‐cresol. The polycondensation proceeded rapidly, compared with the conventional melt polycondensation and solution polycondensation, and was almost completed within 10 min, giving a series of poly(amide‐imide)s with inherent viscosities about 0.28–0.44 dL/g. The resulting poly(amide‐imide)s were obtained in high yield and are optically active and thermally stable. All of the above compounds were fully characterized by means of FTIR spectroscopy, elemental analyses, inherent viscosity (ηinh), solubility test and specific rotation. Thermal properties of the poly(amide‐imide)s were investigated using thermal gravimetric analysis (TGA). © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 516–524, 2004  相似文献   

9.
Sodium 5‐cyanotetrazolate sesquihydrate ( 1 ) was prepared from sodium azide and two equivalents of sodium cyanide under acidic conditions. Sodium 5‐cyanotetrazolate sesquihydrate ( 1 ) reacts with hydroxylammonium chloride to form 5‐aminohydroximoyl tetrazole ( 2 ). 5‐Aminohydroximoyl tetrazole ( 2 ) is treated with sodium nitrite and hydrochloric acid to form 5‐chlorohydroximoyl‐tetrazole ( 3 ). The chloride azide exchange yields 5‐azidohydroximoyl‐tetrazole monohydrate ( 4 ). When compound 4 is treated with hydrochloric acid, 5‐(1H‐tetrazolyl)‐1‐hydroxytetrazole ( 5 ) is obtained in good yield. Compound 5 can be deprotonated twice by various bases. Different ionic derivatives such as bis(hydroxylammonium) ( 6 ), bis(hydrazinium) ( 7 ), bis(guanidinium) ( 8 ), bis(aminoguanidinium) ( 9 ), bis(ammonium) ( 10 ), and diaminouronium ( 11 ) 5‐(1‐oxidotetrazolyl)‐tetrazolate were synthesized and characterized. With respect to energetic use salts 6 and 7 are most relevant. Compounds 3 – 9 and 11 were characterized using low temperature single‐crystal X‐ray diffraction. All compounds were investigated by NMR and vibrational (IR, Raman) spectroscopy, mass spectrometry and elemental analysis. The thermal properties were determined by differential scanning calorimetry (DSC). The sensitivities towards impact ( 4 : 4 J, 5 : 40 J, 6 : 12 J, 7 : 40 J), friction: ( 4 : 60 N, 5 : 240 N, 6 : 216 N, 7 : 240 N), and electrical discharge ( 5 : 0.40 J, 6 : 0.75 J, 7 : 0.75 J), were investigated using BAM standards and a small scale electrostatic discharge tester. The detonation parameters of 5 – 7 were calculated using the EXPLO5.06 code and calculated (CBS‐4 M) enthalpy of formation values.  相似文献   

10.
The thermal cyclopolymerization of three trifluorovinyl aromatic ether monomers 1,1,1‐tris (4‐trifluorovinyloxyphenyl)ethane (1), 4,4′‐bis(4‐trifluorovinyloxy)biphenyl (2) and 2,2‐bis(4‐trifluorovinyloxy‐ phenyl)‐1,1,1,3,3,3‐hexafluoropropane (3) were monitored in situ using time‐resolved electron paramagnetic resonance spectroscopy over a temperature range of 150–210 °C. The signals observed during the early stages of perfluorocyclobutyl polymer production suggest the formation of a triplet state corresponding to the proposed biradical intermediate with a strong dipole–dipole interaction. A doublet splitting shows the presence of hyperfine coupling due to fluorine. The characterization of radical species formed during the polymerization of monomer 1 using model compounds and polymerization kinetics of monomer 2 are also presented. Copyright © 2007 Society of Chemical Industry  相似文献   

11.
Thermal properties of polyimides with main chain containingalicyclic units derived from 3,3′ 4,4′‐oxydiphthalic anhydride (ODPA) and several alicyclic‐ containing diamine monomers, including 1,4‐bis (4‐aminophenoxymethylene) cyclohexane (BAMC), 1,4‐bis (3‐aminophenoxymethylene) cyclohexane (mBAMC), 1,4‐bis (4‐aminobenzoyoloxymethyl) cyclohexane (BAZMC), and 1,4‐bis (3‐aminobenzoyoloxymethyl) cyclohexane (mBAZMC) were characterized in detail. The thermal stability, apparent activation energy, and evolved gas analysis of these polyimides were done using thermogravimetric analysis (TGA) coupled with Fourier transform infrared (FTIR) spectroscopy. Experimental results indicated that the resulting polyimides showed fairly high thermal stability, no weight loss was detected before a temperature of 400°C in nitrogen, and the values of glass‐transition temperature of them were in the range of 134–181°C. Activation energy for the initial thermal degradation of polyimide derived from ODPA and mBAMC in nitrogen were 166 and 162 kJ/mol in two different methods. The TG‐IR results represented that the major evolved products from the nonoxidative thermal degradation were detected to be hydrocarbons, CO, CO2, H2O, and aromatic compounds. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers.  相似文献   

12.
Here we report the synthesis of a number of compounds structurally related to arginine methyltransferase inhibitor 1 (AMI‐1). The structural alterations that we made included: 1) the substitution of the sulfonic groups with the bioisosteric carboxylic groups; 2) the replacement of the ureidic function with a bis‐amidic moiety; 3) the introduction of a N‐containing basic moiety; and 4) the positional isomerization of the aminohydroxynaphthoic moiety. We have assessed the biological activity of these compounds against a panel of arginine methyltransferases (fungal RmtA, hPRMT1, hCARM1, hPRMT3, hPRMT6) and a lysine methyltransferase (SET7/9) using histone and nonhistone proteins as substrates. Molecular modeling studies for a deep binding‐mode analysis of test compounds were also performed. The bis‐carboxylic acid derivatives 1 b and 7 b emerged as the most effective PRMT inhibitors, both in vitro and in vivo, being comparable or even better than the reference compound (AMI‐1) and practically inactive against the lysine methyltransferase SET7/9.  相似文献   

13.
Chemo‐enzymatic synthesis of structured triacylglycerol bearing ferulic acid as a phenolic acid at sn‐1/3 position is described in the present work. Four compounds of varying chain lengths, namely 3‐(4‐hydroxy‐3‐methoxy‐phenyl)‐acrylic acid‐2,3‐bis‐hexanoyloxy‐propyl ester, 3‐(4‐hydroxy‐3‐methoxy‐phenyl)‐acrylic acid‐2,3‐bis‐octanoyloxy‐propyl ester, 3‐(4‐hydroxy‐3‐methoxy‐phenyl)‐acrylic acid‐2,3‐bis‐dodecanoyloxy‐propyl ester, and 3‐(4‐hydroxy‐3‐methoxy‐phenyl)‐acrylic acid‐2,3‐bis‐9‐octadecenoyloxy‐propyl ester were synthesized, and their structures were confirmed by IR, NMR, and MS. Antioxidant activity of the structured phenolic lipids were evaluated using three different in vitro antioxidant assays such as 2, 2‐diphenyl‐1‐picrylhydrazyl free radical (DPPH) scavenging, antioxidant potency in lipid matrix using rancimat, and by the rate of inhibition of autoxidation of linoleic acid in micelles. Ferulic acid and dodecylgallate were used as reference antioxidant compounds. DPPH assay did not show any improvement in the antioxidant activity of ferulic acid with lipophilic modification. However, the antioxidant potency of the structured phenolic lipids measured by rancimat method as well as by the rate of inhibition of autoxidation of linoleic acid in micelle showed improvement in antioxidant activity compared to ferulic acid. This is probably due to better solubility of the synthesized phenolic lipids in a hydrophobic medium and appropriate anchorage in Tween 20 micelle. The observed activities of the structured phenolic lipids are comparable to dodecyl gallate in rancimat assay, but superior to dodecyl gallate in Tween 20 micellar system.  相似文献   

14.
The role of excess ligand in the asymmetric 1,4‐conjugate addition (ACA) of Grignard reagents to α,β‐unsaturated esters compounds catalyzed by copper(I) iodide‐2,2′‐bis(di‐p‐tolylphosphino)‐1,1′‐binaphthyl (CuI‐Tol‐BINAP) is explored herein. In addition, this methodology allows asymmetric induction to be carried out using a non‐chiral phosphine copper complex with excess of a chiral phosphine ligand.  相似文献   

15.
This paper reports a novel microwave‐assisted method for the synthesis of potential high explosives (HEs) such as 3‐nitro‐1,2,4‐triazol‐5‐one (NTO), bis‐(2,2‐dinitropropyl) nitramine (BDNPN), 4‐nitroimidazole (4‐NI) and 2,4,6,8,10,12‐hexanitro‐2,4,6,8,10,12‐hexaazaisowurtzitane (CL‐20). The high temperature thermal rearrangement of 1,4‐dinitroimidazole to 2,4‐dinitroimidazole was also reported using microwave radiation as heating source. The synthesized compounds were characterized by spectroscopic techniques and the data obtained confirmed their structures.  相似文献   

16.
We report a new family of bis‐arylidene oxindole derivatives that show highly selective estrogen receptor (ER)‐mediated anticancer activity at low‐nanomolar concentrations in ER‐positive (ER+) breast cancer cells. In terms of cell growth inhibition, IC50 values for these compounds in ER+ breast cancer cells are two to three orders of magnitude lower than in ER‐negative (ER?) breast cancer cells and non‐cancer cells. In comparison with known bis‐arylidene drugs, these compounds are at least three orders of magnitude more toxic than tamoxifen and 1.5–4‐fold more toxic than 4‐hydroxytamoxifen in ER+ MCF‐7 cancer cells. These oxindoles inhibit ER transactivation, and their anticancer activities are inhibited in ER‐depleted MCF‐7 cells. Some of these nonsteroidal molecules also exhibit essential properties of selective ER down‐regulation. From the development of two series of bis‐arylidene oxindole‐based compounds, we report a new series of anticancer agents for estrogen‐responsive breast cancer.  相似文献   

17.
Four different disulfides, [2,2′‐dithiobis‐(2‐mercaptoacetophenone)]‐4‐triphenylmethylthiosemicarbazone ( 1 ), [5,5′‐dithiobis‐(4‐formyl‐3‐methyl‐1‐phenylpyrazole)]‐4‐triphenylmethylthiosemicarbazone ( 2 ), bis[1‐(2‐mercaptophenyl)‐2‐(4‐(1‐phenyl‐3‐methyl)pyrazole)‐azaethene]di‐sulfide ( 3 ) and bis[1‐phenyl‐2‐(4‐(1‐phenyl‐3‐methyl‐5‐mercapto) pyrazole)‐azaethene]disulfide ( 4 ) were synthesized by Schiff base reactions. Their electrochemical behaviour was examined by cyclic voltammetry. The results show low potentials for the disulfide reduction so that these compounds are suitable for the syntheses of tridentate thiolate ligands from disulfides by electrochemical cleavage. In addition compounds 2 and 4 were characterized by X‐ray structure determination. The structures show significant differences of the S—S bonds and angles as compared to other disulfides without bulky substituents.  相似文献   

18.
The aim of this study is to develop azido‐carrying biodegradable polymers and their postfunctionalization with alkynyl compounds via click chemistry and to investigate their potential use in drug delivery. Azido polymers were prepared by ring‐opening polymerization of cyclic carbonate monomer, 2,2‐bis(azidomethyl)trimethylene carbonate (ATC) with lactide using stannous octoate as catalyst. Several alkynyl compounds were selected to investigate the feasibility and reaction condition of click chemistry. With microwave‐assisting, the reaction time of click chemistry was shortened to 5 min. By using poly(ethylene glycol) (PEG) as macroinitiator, amphiphilic block copolymer mPEG‐b‐P(LA‐co‐ATC) was obtained and it could self‐assemble into micelles by solvent replacement method. The pendant groups were used for conjugating anticancer drugs gemcitabine and paclitaxel and fluorescent dye Rhodamine B. 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide was used to assay the cytotoxicity of the conjugate micelles against SKOV‐3 and HeLa cell lines. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
Bis(indazol‐3‐ol) derivatives ( 5 , 30–38 ) were prepared by alkylation of 3‐alkoxyindazoles with α,ω‐dibromides, followed by removal of the O‐protecting groups. These compounds were subsequently evaluated as inhibitors of biocrystallization of ferriprotoporphyrin IX (heme) to hemozoin, a Plasmodium detoxification specific process. Most bis(5‐nitroindazol‐3‐ols) were good inhibitors, however, a denitro analogue ( 38 ), the intermediate bis(3‐alkoxyindazoles) ( 15 – 29 ) as well as bis(indazolin‐3‐ones) ( 39 – 42 ) were not active, showing the importance of the NO2 and OH groups in the inhibition process.  相似文献   

20.
Three adamantane derivatives substituted by epoxy groups, 1,3‐bis(glycidyloxy)adamantane ( 2a ), 5,7‐dimethyl‐1,3‐bis(glycidyloxy)adamantane ( 2b ), 1,3,5‐tris(glycidyloxy)adamantane ( 2c ), were synthesized from the corresponding adamantanediol or triol in good yields. These three epoxy compounds were polymerized with an acid anhydride, and the heat resistance of the resulting resins was evaluated. The resin prepared from 2c exhibited high heat resistance with the glass transition temperature (Tg) of 208°C and low degree of coloring by heating. The epoxy compounds were also found to be potentially useful as the precursors of high heat‐resistant resins by thermal homopolymerization. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号