首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new class of liquid‐crystalline poly(ethylene imine)s (PEIs) having four differently substituted (? CN,? C4H9,? OCH3 and? NO2) azobenzene side‐chain groups attached through alkyl spacer groups were successfully synthesized using a solution polycondensation reaction. The synthesized polymers were characterized using differential scanning calorimetry, polarized optical microscopy and X‐ray diffraction. The photochemical, thermo‐optical and photo‐orientational behavior of the polymers were investigated in detail. Spin‐coated films of PEIs with azobenzene groups having? C4H9,? OCH3 and? NO2 substituents showed out‐of‐plane molecular orientation on annealing. Except for the PEI with an azobenzene group having ? NO2 substituent, all polymers exhibited good photoresponsive properties upon irradiation with UV and visible light. Films of PEIs with azobenzene side groups having? CN,? C4H9 and? OCH3 substituents showed reversible alignment behavior from random state to out‐of‐plane and from out‐of‐plane to random state on annealing and on irradiation with UV and non‐polarized visible light. The reversibility of the molecular orientation of PEIs from random state to out‐of‐plane and from out‐of‐plane to random state greatly depended on the substituent attached to the azobenzene side‐chain group. Copyright © 2010 Society of Chemical Industry  相似文献   

2.
Reactions of N‐(2,4‐dinitrophenyl)‐4‐arylpyridinium chlorides (aryl (Ar) = phenyl and 4‐biphenyl) with piperazine or homopiperazine caused opening of the pyridinium ring and yielded polymers that consisted of 5‐piperazinium‐3‐arylpenta‐2,4‐dienylideneammonium chloride (? N(CH2CH2)2N+ (Cl?)?CH? CH?C(Ar)? CH?CH? ) or 5‐homopiperazinium‐3‐arylpenta‐2,4‐dienylideneammonium chloride (? N(CH2CH2CH2)(CH2CH2)N+ (Cl?)?CH? CH?C(Ar)? CH?CH? ) units. 1H NMR spectral analysis suggested that the π‐electrons of the penta‐2,4‐dienylideneammonium group of the polymers were delocalized. UV‐visible spectral measurements revealed that the π‐conjugation system expanded along the polymer chains because of the orbital interaction between electrons of the two nitrogen atoms of the piperazinium and homopiperazinium rings. However, the π‐conjugation length depended on the distance between the two nitrogen atoms; that is, the polymers containing the piperazinium ring had a longer π‐conjugation length than those containing the homopiperazinium ring. Conversion of the piperazinium and homopiperazinium rings from the boat to the chair form led to a decrease in the π‐conjugation length. The surface of pellets that were molded from the polymers exhibited metallic luster, and these polymers underwent electrochemical oxidation in solution. Copyright © 2010 Society of Chemical Industry  相似文献   

3.
A new class of main‐chain liquid‐crystalline photodimerizable vanillylidene‐containing alkylpolyphosphate esters were synthesized from 2,5‐bis[m‐hydroxyalkyloxy(vanillylidene)] cyclopentanones with various alkylphosphoro‐ dichloridates by solution polycondensation in chloroform at ambient temperature. Their chemical structures were confirmed by FT‐IR, 1H, 13C and 31P NMR spectroscopic analysis. Dilute‐solution viscosity values were measured in order to obtain the intrinsic viscosities of the synthesized polymers. Mesogenic properties and phase behavior were investigated by the use of hot‐stage optical polarized microscopy and differential scanning calorimetry. Thermogravimetric analysis revealed that all of the polymers were stable up to 170–230 °C and decomposed with high char yields. The shorter methylene‐chain‐containing polymers did not show a liquid‐crystalline phase, while the longer methylene‐chain‐ containing polymers showed grainy and nematic textures. The Tg, Tm and Ti values of the polymers decreased with increasing flexible methylene chain length in the polymer backbones. The photocrosslinking properties of the polymers were studied by UV light/UV spectroscopy; the crosslinking proceeds via 2π–2π cycloaddition reactions of the vanillylidene exocyclic double bonds of the polymers. The rate of crosslinking was faster for the pendant ethoxy‐containing polymers than that of the pendant methoxy‐containing polymers. Copyright © 2005 Society of Chemical Industry  相似文献   

4.
Three series of liquid crystalline and photocrosslinkable poly(4,4′‐stilbeneoxy) alkylarylphosphates were synthesized from various 4,4′‐bis(m‐hydroxyalkyloxy)stilbenes (m = 2, 4, 6, 8, 10) and arylphosphorodichloridates in chloroform by solution polycondensation method. Polarized optical microscope (POM) and differential scanning calorimetry (DSC) observations revealed that polymers containing less than four methylene spacer groups did not exhibit liquid crystalline (LC) texture, possibly due to smaller microdomain and restricted movement of the mesogen. In contrast, polymers containing more than four methylene spacer group established LC texture, which has been attributed to the larger monodomain and free movement of mesogens. Thermogravimetric analysis (TGA) data indicated that thermal stability and char yield decreased with increasing flexible methylene spacer groups, increased significantly for biphenyloxy and 1‐naphthyloxy containing polymers than that of phenyloxy containing polymers ascribed to increasing aromaticity, size, and number of aromatic rings. Photocrosslinking of stilbene containing polymers has been shown to proceed via 2π‐2π cycloaddition reaction by Ultra‐violet (UV) and fluorescence. The rate photocrosslinking has been found to increase with increasing number of methylene group in the main chain. The aromaticity of the side chain also increases the rate of crosslinking. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

5.
A series of crosslinked liquid crystalline polymers and corresponding uncrosslinked liquid crystalline polymers were prepared by graft copolymerization. Their liquid crystalline properties were characterized by differential scanning calorimetry, polarizing optical microscopy, and X‐ray diffraction measurements. The results showed that the crosslinking obtained in the isotropic state and the introduction of nonmesogenic crosslinking units into a polymeric structure could cause additional reduction of the clearing point (Ti) of the crosslinked polymers, compared with the corresponding uncrosslinked polymers. The crosslinked polymers (P‐2–P‐4) with a low crosslinking density exhibited cholesteric phases as did the uncrosslinked polymers. In contrast, a high crosslinking density made the crosslinked polymer P‐5 lose its thermotropic liquid crystalline property. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 773–778, 2004  相似文献   

6.
Side‐chain liquid‐crystalline copolymethacrylates (PMm's), containing para‐nitro azobenzene as the mesogenic group and 2‐hydroxylethyl methacrylate (HEMA) as a comonomer, were synthesized by radical polymerization, and their corresponding liquid‐crystalline elastomers (LCEm's) were prepared through chemical crosslinking. All of the polymers (PMm's) and the elastomers studied showed enantiotropic smectic A phases; the clearing temperature (Ti) of the PMm polymers decreased with increasing amount of HEMA, and the Ti of the corresponding LCEm's decreased compared to that of their precursors. Small‐angle X‐ray scattering studies on the copolymers quenched from their liquid‐crystalline phases indicated that the characteristic distance increased with increasing amorphous component content and thus, the amorphous components were in between the smectic layers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2275–2279, 2003  相似文献   

7.
Europium‐containing cholesteric liquid crystalline polymers were graft copolymerized using poly(methylhydrogeno)siloxane, cholesteryl 4‐(allyloxy)benzoate (M1), cholesteryl acrylate (M2), and a europium complexes monomer (M3). The chemical structures of the monomers were characterized by Fourier transform infrared and 1H‐nuclear magnetic resonance. The mesomorphic properties and phase behavior were investigated by differential scanning calorimetry, thermo gravimetric analysis, polarizing optical microscopy, and X‐ray diffraction. With an increase of europium complexes units in the polymers, the glass transition temperature (Tg) did not change significantly; the isotropic temperature (Ti) and mesophase temperature range (ΔT) decreased. All polymers showed typical cholesteric Grandjean textures, which was confirmed by X‐ray diffraction. The temperatures at which 5% weight loss occurred (Td) were greater than 300°C for the polymers. The introduction of europium complexes units did not change the liquid crystalline state of polymer systems; on the contrary, the polymers were enabled with the significant luminescent properties. With Eu3+ ion contents ranging between 0 and 1.5 mol %, luminescent intensity of polymers gradually increased and luminescent lifetimes were longer than 0.45 ms for the polymers. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40866.  相似文献   

8.
Syntheses of novel liquid‐crystalline polymers containing azobenzene moieties were performed by a convenient route with an acrylate backbone. The azobenzenes were key intermediates of the monomers, and side‐chain liquid‐crystalline polymers were prepared, that is, poly[α‐{4‐[(4‐acetylphenyl)azo]phenoxy}alkyloxy]acrylates, for which the spacer length was 3 or 11 methylene units. In addition, poly[3‐{4‐[(3,5‐dimethylphenyl)azo]phenoxy}propyloxy]acrylate was prepared with a spacer length of 3 methylene units. The structures of the precursors, monomers, and polymers were characterized with Fourier transform infrared, 1H‐NMR, and 13C‐NMR techniques. The polymers were obtained by conventional free‐radical polymerization with 2,2′‐azobisisobutyronitrile as an initiator. The phase‐transition temperatures of the polymers were studied with differential scanning calorimetry, and the phase structures were evaluated with a polarizing optical microscopy technique. The results showed that two of the monomers and their corresponding polymers exhibited nematic liquid‐crystalline behavior, and one of the monomers and its corresponding polymer showed smectic liquid‐crystalline behavior. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2653–2661, 2002  相似文献   

9.
Pyrene end‐labeled star poly(?‐caprolactone)s (PCLs) with polyhedral oligomeric silsesquioxane (POSS) core were prepared by combination of copper(I)‐catalyzed azide–alkyne cycloaddition (CuAAC) click chemistry and ring‐opening polymerization techniques. First, ?‐caprolactone (?‐CL) is polymerized by using 1‐pyrene methanol as initiator and stannous octoate as catalyst to obtain α‐pyrene‐ω‐hydroxyl telechelic PCL with different chain lengths. Then, its hydroxyl group is converted to acetylene functionality by esterification reaction with propargyl chloroformate. Finally, the CuAAC click reaction of α‐pyrene‐ω‐acetylene telechelic PCL with POSS‐(N3)8 leads to corresponding pyrene end‐labeled star‐shaped PCLs. The successful synthesis of pyrene end‐labeled star polymers is clearly confirmed by 1H‐nuclear magnetic resonance, Fourier transform infrared, gel permeation chromatograph, differential scanning calorimeter, and thermogravimetric analysis. Furthermore, non‐covalent interactions of obtained star polymers with fullerene are investigated in liquid media. Based on Raman spectroscopy and visual investigations, the star polymer having shorter chain length exhibited better and more stable dispersion with fullerene. The amount of pyrene units present per polymer chains can directly influence the dispersion stability of fullerene. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46520.  相似文献   

10.
Mixed‐substituent fluoroalkoxyphosphazene polymers bearing ~15% 1H,1H,2H,2H‐perfluorooctan‐1‐oxy or 1H,1H,2H,2H‐perfluorodecan‐1‐oxy side groups together with trifluoroethoxy cosubstituent groups were synthesized. The low reactivity of the long‐chain fluoroalkoxides and their limited solubility in organic solvents prevented higher levels of substitution. Moreover, the sodium alkoxides with two methylene residues adjacent to the oxygen proved to be unstable in solution due to elimination of NaF and precipitation of side products, and this limited the time available for chlorine replacement reactions. The resulting cosubstituent polymers were characterized by proton nuclear magnetic resonance (1H‐NMR), 31P‐NMR, 19F‐NMR, gel‐permeation chromatography, and differential scanning calorimetry. Unlike homo‐ or mixed‐substituent fluoroalkoxyphosphazene polymers, such as [NP(OCH2CF3)2]n (a microcrystalline thermoplastic, Tg ~ ?63°C, Tm ~ 242°C) or [NP(OCH2CF3)(OCH2(CF2)xCF2H)]n (PN‐F, a rubbery elastomer, Tg ~ ?60°C, but no detectable Tm), the new polymers are gums (Tg ~ ?50°C, but no detectable Tm) with molecular weights in the 105 g/mol rather than the 106 g/mol range. POLYM. ENG. SCI., 54:1827–1832, 2014. © 2013 Society of Plastics Engineers  相似文献   

11.
A mesogenic crosslinking agent M‐1 was synthesized to minimize the perturbations of nonmesogenic crosslinking agent for liquid‐crystalline elastomers. The synthesis of side‐chain liquid‐crystalline elastomers containing a rigid mesogenic crosslinking agent M‐1 and a nematic monomer M‐2 was described by a one‐step hydrosilylation reaction. The chemical structures of the obtained monomers and network polymers were confirmed by Fourier transform infrared and 1H‐NMR spectroscopy. The mesomorphic properties and phase behavior were investigated by differential scanning calorimetry, polarizing optical microscopy, and X‐ray diffraction measurements. The influence of the crosslinking units on the phase behavior was discussed. The liquid‐crystalline elastomers containing less than 15 mol % of the crosslinking units showed elasticity, reversible phase transition, and threaded texture. The experimental results demonstrated that isotropic temperature and liquid‐crystalline range of polymers P‐1–P‐7 decreased a little as the concentration of crosslinking agent M‐1 increased, and the use of mesomorphic crosslinking agent M‐1 promotes the arrangement of liquid‐crystalline units from P‐1 to P‐5. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1712–1719, 2005  相似文献   

12.
In this study, we prepared two series of new side‐chain cholesteric liquid‐crystalline elastomers (PI and PII) derived from the same chiral bisolefinic crosslinking units and different nematic liquid‐crystalline monomers. The chemical structures of the monomers and polymers obtained were confirmed by Fourier transform infrared and 1H‐NMR spectroscopy. The phase behavior properties were investigated by differential scanning calorimetry, thermogravimetric analysis, and polarizing optical microscopy. The effect of the length of the carbochain on the phase behavior of the elastomers was investigated. The polymers of the PI and PII series showed similar properties. Polymer P1 showed a nematic phase, P2–P7 showed a cholesteric phase, and P4–P7, with more than 6 mol % of the chiral crosslinking agent, exhibited a selective reflection of light. The elastomers containing less than 15 mol % of the crosslinking units displayed elasticity, a reversible phase transition with wide mesophase temperature ranges, and a high thermal stability. The experimental results demonstrate that the glass‐transition temperatures first decreased and then increased; the isotropization temperatures and the mesophase temperature ranges decreased with increasing content of crosslinking agent. However, because of the different lengths of the carbochain, the glass‐transition temperatures and phase‐transition temperatures of the PI series were higher than those of the PII series, and the PI and PII elastomers had their own special optical properties. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1204–1210, 2005  相似文献   

13.
Well‐defined side‐chain liquid crystalline star‐shaped polymers were synthesized with a combination of the “core‐first” method and atom transfer radical polymerization (ATRP). Firstly, the functionalized macroinitiator based on the α‐Cyclodextrins (α‐CD) bearing functional bromide groups was synthesized, confirmed by 1H‐NMR, MALDI‐TOF, and FTIR analysis. Secondly, the side‐chain liquid crystalline arms poly[6‐(4‐methoxy‐4‐oxy‐azobenzene) hexyl methacrylate] (PMMAzo) were prepared by ATRP. The characterization of the star polymers were performed with 1H‐NMR, gel permeation chromatography (GPC), differential scanning calorimetry (DSC) and thermal polarized optical microscopy (POM). It was found that the liquid crystalline behavior of the star polymer α‐CD‐PMMAzon was similar to that of the linear homopolymer. The phase‐transition temperatures from the smectic to nematic phase and from the nematic to isotropic phase increased as the molecular weight increased for most of these samples. All star‐shaped polymers show photoresponsive isomerization under the irradiation with Ultraviolet light. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
A novel class of wholly aromatic poly(ester‐imide)s, having a biphenylene pendant group, with inherent viscosities of 0.32–0.49 dL g?1 was prepared by the diphenylchlorophosphate‐activated direct polyesterification of the preformed imide‐ring‐containing diacid, 4‐p‐biphenyl‐2,6‐bis(4‐trimellitimidophenyl)pyridine (1) with various aromatic dihydroxy compounds in the presence of pyridine and lithium chloride. A reference diacid, 2,6‐bis(trimellitimido)pyridine (2) without a biphenylene pendant group and two phenylene rings in the backbone, was also synthesized for comparison purposes. At first, with due attention to structural similarity and to compare the characterization data, a model compound (3) was synthesized by the reaction of compound 1 with two mole equivalents of phenol. Moreover, the optimum condition of polymerization reactions was obtained via a study of the model compound synthesis. All of the resulting polymers were characterized by Fourier transform infrared and 1H NMR spectroscopy and elemental analysis. The ultraviolet λmax values of the poly(ester‐imide)s were also determined. All of the resulting polymers exhibited excellent solubility in common organic solvents, such as pyridine, chloroform, tetrahydrofuran, and m‐cresol, as well as in polar organic solvents, such as N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide, and dimethyl sulfoxide. The crystalline nature of the polymers obtained was evaluated by means of wide‐angle X‐ray diffraction. The resulting poly(ester‐imide)s showed nearly an amorphous nature, except poly(ester‐imide) derived from 4,4′‐dihydroxy biphenyl. The glass transition temperatures (Tg) of the polymers determined by differential scanning calorimetry thermograms were in the range 298–342 °C. The 10% weight loss temperatures (T10%) from thermogravimetric analysis curves were found to be in the range 433–471 °C in nitrogen. Films of the polymers were also prepared by casting the solutions. Copyright © 2006 Society of Chemical Industry  相似文献   

15.
A series of combined liquid crystalline poly(bis‐4,4′‐oxy‐α‐methylstilbene‐4‐substituted (X) phenylazo‐4′‐phenyloxydecylphosphate ester)s bearing photoreactive mesogenic units were synthesized. FTIR and 1H NMR spectroscopy confirmed the structures of these polymers. The inherent viscosities of the polymers were found to be in the range 0.45–0.65 dL g?1. Polarizing optical microscopy (POM) exhibited birefringent liquid crystalline melt properties. The thermal properties of all of the polymers were studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The photochemical properties of these polymers were studied by UV‐visible and fluorescence spectroscopy. The influence of the photoinduced EZ (transcis) isomerization of the various terminal substituents of the side‐chain azobenzenes was investigated. The kinetics of the photoisomerization process reveal the switching times for the conversion between the trans‐ and cis‐ forms of the azobenzene units. The photo‐optical properties of these polymers exhibited layered smectic phases and showed good photoinduced properties in their mesomorphic states. Copyright © 2005 Society of Chemical Industry  相似文献   

16.
BACKGROUND: Wholly aromatic polyamides (aramids) are high‐performance polymeric materials with outstanding heat resistance and excellent chemical stabilities due to chain stiffness and intermolecular hydrogen bonding of amide groups. Synthesis of structurally well‐designed monomers is an effective strategy to prepare modified forms of these aramids to overcome lack of organo‐solubility and processability limitations. RESULTS: A novel class of wholly aromatic polyamides was prepared from a new diamine, namely 2,2′‐bis(p‐phenoxyphenyl)‐4,4′‐diaminodiphenyl ether (PPAPE), and two simple aromatic dicarboxylic acids. Two reference polyamides were also prepared by reacting 4,4′‐diaminodiphenyl ether with the same comonomers under similar conditions. M?w and M?n of the resultant polymers were 8.0 × 104 and 5.5 × 104 g mol?1, respectively. Polymers resulting from PPAPE exhibited a nearly amorphous nature. These polyamides exhibited excellent organo‐solubility in a variety of polar solvents and possessed glass transition temperatures up to 200 °C. The 10% weight loss temperatures of these polymers were found to be up to 500 °C under a nitrogen atmosphere. The polymers obtained from PPAPE could be cast into transparent and flexible films from N,N‐dimethylacetamide solution. CONCLUSION: The results obtained show that the new PPAPE diamine can be considered as a good monomer to enhance the processability of its resultant aromatic polyamides while maintaining their high thermal stability. The observed characteristics of the polyamides obtained make them promising high‐performance polymeric materials. Copyright © 2009 Society of Chemical Industry  相似文献   

17.
Chitosan (Chi; 0.5 g) in 69.66 mM aqueous acetic acid was mixed with 312.4 mM methionine (methi) at 0.01 mL/s to disperse and cause optimum collisions for supporting condensation reactions through ? NH2 of Chi and ? COOH groups of methi. The functionalized chitosan (f‐Chi) product with methi developed an amide bond, which was represented as methi‐functionalized chitosan [Chi–NH? C(?O)–methi]. Both the 1‐Ethyl‐3‐(3‐dimethylaminopropyl)carbodiimide (EDC) and Dean–Stark methods were followed for Chi functionalization. Sulfonation with chlorosulfonic acid in a dimethylformamide medium was conducted at 90 °C and 750 rpm with an approximately 72% yield. The Chi–NH? C(?O)–methi was characterized by 1H‐NMR spectroscopy and Fourier transform infrared stretching frequencies. The onset temperature of 280 °C recorded by thermogravimetric analysis/differential scanning calorimetry analysis, confirmed the high stability of the covalent bonds in Chi–NH? C(?O)–methi. The synthesis was repeated with other series members of sulfur (S) atoms containing α‐amino acids: homocysteine, ethionine, and propionine. The shielding of terminal ? CH3 was enhanced on elongation of the terminal alkyl chain in the case of propionine. The peak for the ? NH2 of Chi at a δ value of 4.73 ppm shifted to 5.36 ppm in Chi–NH? C(?O)–methi because of the involvement of ? NH2 in ? NH? C(?O)? . Theoretically, the value of ? NH2 of Chi was 5.11 ppm, with a difference of 0.38 ppm as compared to the experimentally determined value of 4.73 ppm. Additionally, a new peak at a δ value of 3.26 ppm also confirmed Chi functionalization. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46000.  相似文献   

18.
A novel biodegradable magnetic‐sensitive shape memory poly(?‐caprolactone) nanocomposites, which were crosslinked with functionalized Fe3O4 magnetic nanoparticles (MNPs), were synthesized via in situ polymerization method. Fe3O4 MNPs pretreated with γ‐(methacryloyloxy) propyl trimethoxy silane (KH570) were used as crosslinking agents. Because of the crosslinking of functionalized Fe3O4 MNPs with poly(?‐caprolactone) prepolymer, the properties of the nanocomposites with different content of functionalized Fe3O4 MNPs, especially the mechanical properties, were significantly improved. The nanocomposites also showed excellent shape memory properties in both 60 °C hot water and alternating magnetic field (f = 60, 90 kHz, H = 38.7, 59.8 kA m?1). In hot water bath, all the samples had shape recovery rate (Rr) higher than 98% and shape fixed rate (Rf) nearly 100%. In alternating magnetic field, the Rr of composites was over 85% with the highest at 95.3%. In addition, the nanocomposites also have good biodegradability. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45652.  相似文献   

19.
A series of new thermotropic main‐chain liquid crystalline copolyesters were prepared by polycondensation of 2,6‐naphthalenedicarbonyl chloride, 4,4′‐thiodiphenol, and α,ω‐alkanediols (n = 4–10) in diphenyl ether at 200°C. Thermal transition behaviors of these copolyesters were investigated by differential scanning calorimetry. Moreover, their thermal stabilities and mesomorphic textures were studied by thermogravimetric analysis and polarizing optical microscopy, respectively. Corresponding model compounds with terminal mesogenic units and central polymethylene spacers were also synthesized for comparison. Both copolymers and model compounds exhibit odd–even dependency of melting temperatures, transition enthalpy (ΔHm), and entropy (ΔSm) on the number of methylene units in the spacer. However, the odd–even effects in model compounds are much more distinctive. Nematic mesophases are the only texture observed in melts, except the model compounds with longer methylene units (n = 8, 10), in which smectic mesophases can be observed. The Tm values of the copolyesters (TDP/HD = 1/1) are between 233 and 259°C, depending on spacer length. The initial decomposition temperatures of the copolyesters are above 419°C under N2 atmosphere. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1536–1546, 2002  相似文献   

20.
A series of novel aromatic diamines containing cycloaliphatic moieties was synthesized by the reaction of cycloalkanones like cyclohexanone and cycloheptanone with 2,6‐dimethylaniline. The tetrimide diacid was synthesized using the prepared diamine with 3,3′,4,4′‐benzophenonetetracarboxylic acid dianhydride/pyromellitic dianhydride and p‐aminobenzoic acid. The polymers were prepared by treating the tetrimide diacid with different aromatic diamines. The structures of the monomers and polymers were identified using elemental analysis and Fourier transform infrared, 1H NMR and 13C NMR spectroscopy. The polymers show excellent solubility. The polymers are amorphous and have high optical transparency. They also show good thermal stability and their Tg value is found to be in the range 268–305 °C. Copyright © 2007 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号