首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Low density polyethylene (LDPE) was prepared into micro‐ or submicro‐spheres or nanofibers via melt blending or extrusion of cellulose acetate butyrate (CAB)/LDPE immiscible blends and subsequent removal of the CAB matrix. The sizes of the PE spheres or fibers can be successfully controlled by varying the composition ratio and modifying the interfacial properties of the blends. The surface structures of LDPE micro‐ or submicro‐spheres and nanofibers were analyzed using SEM and FTIR‐ATR spectroscopy. In addition, the crystalline structures of the LDPE nanofibers were characterized.

  相似文献   


2.
Novel fluoroalkyl end‐capped oligomer/hydroxyapatite nanocomposites have been easily prepared by the reaction of disodium hydrogenphosphate and calcium chloride in the presence of self‐assembled molecular aggregates formed by fluoroalkyl end‐capped oligomers in aqueous media. The fluorinated hydroxyapatite nanocomposites thus obtained were found to exhibit a good dispersibility in a variety of media, and were applied to the surface modification of glass.

  相似文献   


3.
PCL‐based nanoclay (layered silicate) nanocomposites are prepared using a small scale intermeshing co‐rotating twin‐screw extruder. Improving the level of nanoclay dispersion in PCL nanocomposites is obtained by changing the extrusion parameters. Increasing the screw speed and decreasing the throughput leads to an improved dispersion quality, as observed from the improved mechanical properties of the nanocomposites as well as from their clearly affected rheological and crystallization behavior. Furthermore, a commercially available software that simulates the twin‐screw extrusion process (LUDOVIC) is used to asses the processing parameters applied for making the nanocomposites.

  相似文献   


4.
Sunflower oil‐based HBTPU/Ag and LTPU/Ag nanocomposites have been prepared by in situ catalytic reduction of a silver salt. The virgin polymer and their nanocomposites are soluble in various polar organic solvents and amenable for both solution‐casting and hot pressing. XRD, TEM, and UV spectroscopic analyses ascertained well‐dispersed, narrow‐sized Ag nanoparticles. Tensile testing, dynamic mechanical, thermogravimetric, and DSC analyses showed desirable mechanical and thermal features with improvement upon incorporation of Ag nanoparticles and the presence of a hyperbranched component in the nanocomposites. RSM has been used to evaluate the catalytic efficacy of the nanocomposites.

  相似文献   


5.
A “green” processing method, dual‐melt extrusion, was used to prepare thermoplastic starch/montmorillonite nanocomposites without organic reactions in the solution. XRD demonstrates that sorbitol enlarged the interlayer distance of MMT during the first step. MMT‐sorbitol, formamide and starch were used to obtain TPS/MMT nanocomposites in the second step. XRD and TEM reveal that TPS intercalated the layers of MMT. With increasing MMT content, improvements in thermal stability, tensile strength, Young's modulus and energy break, and a slight decrease of elongation at break, appeared. The effect of water content on the tensile strength and elongation at break was also studied.

  相似文献   


6.
CNT based elastomer‐hybrid‐nanocomposites prepared by melt mixing have been investigated showing promising results in technologically relevant electrical, mechanical, and fracture‐mechanical properties. It is demonstrated that the incorporation of CNT in silica‐filled natural rubber results in a good dispersion of the CNT. The materials show an enhanced mechanical stiffness and tensile strength, an increased modulus, and a high electrical conductivity with quite low amounts of CNT, though the tear resistance under dynamical loading is slightly reduced. Using DMA and dielectric spectra, a better understanding of the conduction mechanism, the polymer/tube interaction, and the filler networking in CNT nanocomposites is achieved.

  相似文献   


7.
A simple, easily accessible solvent‐free method for the dispersion of MWCNTs into PET is proposed, based on the preparation of a microparticulate polymer/nanotube masterbatch via cryogenic impact‐milling and its subsequent melt blending with the bulk polymer. Thermal and mechanical properties of nanocomposites prepared using this method were evaluated as a function of nanotube concentration. Thermal stability was improved, and superior crystallization behavior of PET in the nanocomposites was observed. Significant improvements of around 25% in tensile strength and tensile modulus of the nanocomposites was achieved using this strategy, with only 0.25 wt.‐% MWCNT, compared to previous literature data where 1 wt.‐% MWCNT was employed.

  相似文献   


8.
Fully exfoliated PS/clay nanocomposites were prepared via FRP in dispersion. Na‐MMT clay was pre‐modified using MPTMS before being used in a dispersion polymerization process. The objective of this study was to determine the impact of the clay concentrations on the monomer conversion, the polymer molecular weight, and the morphology and thermal stability of the nanocomposites prepared via dispersion polymerization. DLS and SEM revealed that the particle size decreased and became more uniformly distributed with increasing clay loading. XRD and TEM revealed that nanocomposites at low clay loading yielded exfoliated structures, while intercalated structures were obtained at higher clay loading.

  相似文献   


9.
This paper demonstrates how the electric‐field‐assisted thermal annealing of octadecylamine‐functionalized SWNT/PMMA films induces an increase in the composite transversal conductivity of several orders of magnitude and a decrease in the lateral conductivity. This difference has been rationalized in terms of the nanotube alignment into the polymer matrix along the electric field direction. This result provides an initial understanding of how electric fields can be used to control the bulk physical properties of such nanocomposites.

  相似文献   


10.
PVDF nanocomposites are prepared through solution mixing of Au‐NPs or Au‐NSs with PVDF. The novel optical properties of Au‐NPs and ‐NSs are retained as confirmed from UV‐Vis spectra. Analysis of resulting nanocomposites by FT‐IR, XRD, and DSC shows an obvious polymorphism change from α‐ to β‐form compared to PVDF prepared under the same conditions. The β‐polymorph seems to be more prominent with higher concentration of Au‐NPs (0.5%) and even more so with Au‐NSs. Thermogravimetric analysis shows that both nanocomposites have better resistance toward thermal degradation. Combination of novel optical properties of Au‐NPs or Au‐NSs with induced ferroelectric‐active β‐polymorph in PVDF can lead to new design of optical, piezoelectric devices.

  相似文献   


11.
EVA copolymer/organoclay nanocomposites were prepared using melt‐compounding. Organoclays were obtained using wet and semi‐wet modification methods. These methods enable us to obtain organoclays with adequate modifier incorporation, but organoclays with a homogeneous and narrow agglomeration size distribution were obtained only with the wet method. TS and EB were higher for nanocomposites obtained with organoclays prepared using the wet method. Analysis of Limiting Oxygen Index, UL94 test and Cone Calorimeter test showed that the retardant properties of nanocomposites were also influenced by the kind of modifiers and the modification method.

  相似文献   


12.
The influence of the functionalization of fully condensed POSS cages on the properties of POM‐based nanocomposites is studied. POSS with different organic substituents [glycidylethyl, aminopropylisobutyl, and poly(ethylene glycol)] are taken into account and melt mixed with POM. Good dispersion was achieved upon the addition of amino functionalized POSS, leading to an increase on the thermal decomposition temperature under nitrogen atmosphere up to 50 °C. However, µm‐size aggregates were observed for other nanocomposites. There is no significant change in other thermal properties of the nanocomposites. The relationships among these effects and the morphological characteristics of the systems were analyzed.

  相似文献   


13.
pCBT/MWCNT nanocomposites were prepared by in situ polymerization of CBT after solid‐phase HEBM of the polymerization catalyst containing CBT with MWCNT. The crystallinity and crystallization behavior of the pCBT nanocomposites were studied by WAXS and DSC. The MWCNTs did not affect the crystallinity of the isothermally produced pCBT significantly, but acted as nucleation agents during the crystallization of pCBT from its melt. pCBT/MWCNT nanocomposites were subjected to DMTA, static flexure, and dynamic Charpy impact tests. The flexural modulus, strength, and impact strength from these tests all went through a maximum as a function of the MWCNT content. Optimum properties were found in the MWCNT range of 0.25–0.5 wt.‐%.

  相似文献   


14.
Organoclay–polyolefin nanocomposites have been shown to exhibit slightly increased thermal stability and decreased flammability, compared to unfilled polyolefins. In contrast, we find that when the clay has not been organically modified, the resulting polyolefin nanocomposites are less thermally stable and, unexpectedly, also much less flammable. In this contribution, we investigate the mechanistic origins of these effects. Clay–polyolefin nanocomposites were prepared by in situ polymerization of ethylene or propylene, using a catalyst adsorbed onto the clay. Decreased thermal stability is attributed to clay‐catalyzed polymer decomposition, while decreased flammability arises in part from clay‐catalyzed formation of a polyaromatic char from olefins trapped in the material by the dispersed nanofiller.

  相似文献   


15.
Preparation and analysis of morphologic and electrical properties of high‐performance multiwalled carbon nanotube/polyamide 6 nanocomposites was achieved. The MWNTs were surface‐coated by in situ polymerization of ethylene as catalyzed directly from the nanotube surface previously treated by a highly active metallocene‐based complex. The so‐produced polyethylene‐coated MWNTs were melt‐mixed with the PA6 matrix. Pristine MWNTs were also dispersed in PA6. The in situ ethylene polymerization/coating reaction allowed the destructuring of the native bundle‐like aggregates leading to the preparation of nanocomposites with improved properties even at very low nanofiller content.

  相似文献   


16.
A novel zirconia polyester nanocomposite is prepared using an in situ approach. Surface‐functionalized zirconia nanoparticles are obtained by attaching 3‐phosphonopropionic acid to the metal oxide. Neat and surface‐covered metal oxide particles are incorporated at the beginning of the polyesterification reaction of isophthalic acid and neopentyl glycol resulting in zirconia/poly(neopentyl isophthalate) (PNI) nanocomposites. TEM shows that the dispersibility of the inorganic filler is improved by covering the zirconia surface with carboxylic acid groups. These results are verified by SAXS. Rheological measurements reveal that the viscosities are increasing compared to pristine PNI at particle loads of 10 wt% (neat zirconia) and 5 wt% (phosphonic‐acid‐capped zirconia), respectively.

  相似文献   


17.
Isotactic PP nanocomposites filled with Fe@FeO nanoparticles are fabricated by a facile ex situ method. The nanofillers are dispersed in a boiling PP/xylene solution. X‐ray diffraction is used to determine the nanofiller effects on the crystallinity of PP. The crystallinity along the (040) plane is found to decrease with the incorporation of nanoparticles. Thermal properties and crystallinity are studied by TGA and DSC, respectively. Enhanced thermal stability and influenced crystallinity are observed in the PP nanocomposites compared with those of pure PP. An increased dielectric property without percolation threshold is observed. In addition, the nanocomposites are found to exhibit ferromagnetic properties.

  相似文献   


18.
This paper investigates the effect of both the clay loading and the monomer feed rate on the morphology and properties of poly(styrene‐co‐butyl acrylate)‐clay nanocomposites prepared in emulsion polymerization. Analysis by X‐ray diffraction (XRD) and transmission electron microscopy (TEM) of the nanocomposites prepared by batch polymerization showed that the polymer clay nanocomposites (PCNs) with 1–3 wt.‐% clay loading resulted in intercalated structures, while exfoliated structures were obtained at 10 wt.‐% clay loading. The polymerization was also carried out with semi‐batch polymerization. The morphology, thermal stability, and mechanical properties of nanocomposites obtained were found to be more strongly dependent on the clay/polymer ratio than the monomer feed rate.

  相似文献   


19.
Next to the intended increase of the impact toughness, impact modification of polycarbonate generally results in an unwanted decrease in yield stress and time‐to‐failure under constant stress. It is demonstrated that this loss in strength can be fully compensated for by an annealing treatment, or by increasing the mold temperature. The influence of impact modification on the short‐ and long‐term strengths of glassy polymers is predicted by the extension of existing models with a scaling rule based on the filler volume percentage. Introduction of this scaling rule in the evolution of yield stress during physical aging even allows for the direct prediction of yield stress on the basis of processing conditions.

  相似文献   


20.
Two novel cationic RAFT agents, PCDBAB and DCTBAB, were anchored onto MMT clay to yield RAFT‐MMT clays. The RAFT‐MMT clays were then dispersed in styrene where thermal self‐initiation polymerization of styrene to give rise to exfoliated PS/clay nanocomposites occurred. The RAFT agents anchored onto the clay layers successfully controlled the polymerization process resulting in controlled molecular masses and narrow polydispersity indices. The nanocomposites prepared showed enhanced thermal stability, which was a function of the clay loading, clay morphology, and slightly on molecular mass.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号