首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
王哲  沈雪红 《工具技术》2019,53(10):83-86
为探究冷却润滑条件对难加工材料镍基高温合金Inconel 718切削加工质量影响规律,基于Advantedge有限元软件,采用三种不同的冷却润滑方式,对Inconel 718材料进行干式切削、浇注式切削、低温冷风微量润滑切削仿真,对比分析不同冷却及润滑条件对切削力、切削温度、切屑形态、残余应力变化的影响规律。  相似文献   

2.
传统的切削加工大量采用浇注法降低加工区温度,切削液的大量使用给环境和操作者健康带来了很大危害,而且增加了切削液排放回收的成本,面对人类社会可持续发展的需要,实施绿色制造已势在必行.在分析了绿色切削加工技术,如干切削技术、微量润滑、液态氮冷却、气体射流冷在机械制造中的应用及其技术特征.结论是绿色切削加工技术将逐渐取代传统的浇注供液方法,是未来制造业的发展方向,具有很好的发展前景.  相似文献   

3.
传统的切削加工大量采用切削液浇注法降低加工区温度,切削液的大量使用给环境和操作者健康带来了很大危害,而且增加了切削液排放回收的成本。面对人类社会可持续发展的需要,实施绿色制造已势在必行。本文分析了绿色切削加工技术,如干切削技术、微量润滑、液态氮冷却、气体射流冷却在机械制造中的应用及其技术特征,结论是绿色切削加工技术将逐渐取代传统的浇注供液方法,是未来制造业的发展方向,具有很好的发展前景。  相似文献   

4.
为实现304不锈钢的绿色切削,以过热水蒸气作冷却润滑介质,用Al2O3-TiC复相陶瓷刀具对304不锈钢进行单因素切削试验.试验结果表明:与干切削相比,用过热水蒸气冷却润滑切削时主切削力减小了6% ~17%,加工表面硬化程度降低了3%~6%,并具有较高的加工表面质量.根据试验结果和冷却润滑作用机理分析可知,过热水蒸气具有较好的冷却润滑作用,且廉价无污染,有望实现304不锈钢的绿色切削.  相似文献   

5.
《工具技术》2014,(4):25-27
钛合金是一种典型的难加工材料,其热传导率低,切削过程温升大而易加剧刀具磨损。本文通过对TC4钛合金的车削试验,研究了在干切削和复合喷雾冷却条件下切削温度随切削速度、切削深度和进给量的变化情况。结果表明:切削温度随着切削速度、切削深度和进给量的增大而增大;采用复合喷雾冷却技术可在TC4钛合金车削过程中取得较好的冷却效果,切削温度明显低于干切削条件下的切削温度。  相似文献   

6.
静电冷却干式切削技术应用气体放电原理,将压缩空气离子化、臭氧化,在切削区域形成特殊环境,从而实现冷却润滑的一种干式切削方法。本文应用静电冷却装置切削钛合金,并与切削液冷却进行比较分析。试验表明:静电冷却可达到常规切削的加工效果,是一种很有前途的绿色加工工艺。  相似文献   

7.
在机械切削中采用低温冷风射流冷却代替传统冷却液不仅能起到有效的冷却和润滑作用,而且能避免对环境的污染。通过对45钢在不同冷却方式下的切削温度对比实验,探讨了低温冷风射流冷却的优越性和切削用量三要素对切削温度的影响规律。实验表明,低温冷风射流冷却比传统冷却液冷却和干切削更能有效地降低切削温度,冷风的吹入角度对切削温度的影响也是不同的。通过实验获得了几种不同冷风吹入角度对切削温度的影响曲线,为工业化生产提供了依据。  相似文献   

8.
针对传统的大浇注式切削加工存在切削液浪费大、冷却润滑效果不好、成本高、污染环境、危害个人健康等问题,介绍了一种新的润滑冷却方式,即低温微量润滑(MQL)技术.通过微观角度研究传统浇注式和MQL切削加工中切削液的作用机理和相关的实验结果,对比发现低温微量润滑技术在实际应用中具有很多方面的优势,这项技术具有较高的推广价值和广阔的应用前景,比较符合绿色可持续发展之路.  相似文献   

9.
切削热是金属切削加工中的重要物理现象,特别是刀尖点温度对于切削研究具有重要的参考价值,但是现有的切削温度测量方法很难实现对刀尖点切削温度的精确测量。本文提出一种人工热电偶法和有限元传热仿真相结合测量车削刀尖点温度的方法,并利用专业切削仿真软件进行验证。研究表明这种方法准确可靠,为研究车削过程刀尖点温度提供了新的测量方法。  相似文献   

10.
为实现高锰钢的绿色切削,以过热水蒸气作为冷却润滑介质,用Al_2O_3-TiC复相陶瓷刀具对高锰钢ZGMn13进行单因素切削试验。试验结果表明:与干切削相比,用过热水蒸气冷却润滑切削时主切削力减小了20%~24%,加工表面硬化程度降低了6%~12%,并具有较高的加工表面质量。根据试验结果和冷却润滑作用机理分析可知,过热水蒸气具有较好的冷却和润滑作用,且廉价无污染,有望实现高锰钢的绿色切削。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号