共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
针对多目标粒子群算法对初值敏感性、收敛性较差,以及局部搜索能力不强的劣势,提出了一种改进的多目标粒子群优化算法;首先,提出了一种基于改进Tent映射的初始种群赋值方法,使得初值种群尽可能均匀地分布在决策空间;其次,使用基于改进的世代距离指标作为算法陷入局部最优的判断条件,并使用改进Tent映射防止算法陷入局部最优;同时,采用一种新的动态惯性权重保持种群的多样性;最后,将改进的算法用于某型飞机纵向控制律设计中,并通过仿真验证了该设计方法的有效性. 相似文献
3.
为弥补粒子群后期收敛缓慢与早熟的不足,提出了一种局部搜索与改进MOPSO的混合优化算法(H-MOP-
SO)。该算法首先采用非均匀变异算子和自适应惯性权重,强化全局搜索能力;继而建立混合算法模型,并利用侧步
爬山搜索算法对粒子群作周期性优化,使远离前沿的粒子朝下降方向搜索,而靠近前沿的粒子朝非支配方向搜索,加
快粒子群的收敛并改善解集多样性。对标准测试函数的求解表明,该算法比MOPSO, NSGA-II和MOEA/D具有更
好的多样性和收敛性。供应商优选问题的求解进一步验证了H-MOPSO的有效性。 相似文献
4.
可靠性优化问题是大型复杂系统设计的一个关键问题。针对大型复杂系统多个指标(可靠度、造价和冗余数)同时进行最优分配的结果多样性不好的问题,提出了一种基于杂草克隆的多目标粒子群算法—IWMOP-SO(invasive weed multi-objective particle swarm optimization)的多指标分配方法。该分配方法通过引入杂草克隆机制来改善Pareto最优解的收敛性和多样性。通过对大型复杂系统多个指标进行分配,其分配效果与NSGA-Ⅱ相比,得到的Pareto非劣解集多样性和均匀性好,分布范围更广,更利于设计者进行决策,是一种更有效的复杂系统多指标分配方法。 相似文献
5.
用多目标粒子群优化(MOPSO)算法的粒子位置更新模式替代NSGA Ⅱ的交叉操作,获得一个新的算法(NSGA Ⅱ MOPSO)。为使这两种差异较大的算法实现无缝融合,在NSGA Ⅱ算法范围内对MOPSO中特有的概念粒子及其速度、Pbest、引导者进行处理: 1)粒子对应于NSGA Ⅱ中子代群体的个体; 2)不再使用粒子速度概念; 3)不再使用粒子Pbest概念,代之以从父代群体中为每个粒子的每一维寻找一个最近的该粒子非支配个体; 4)每一个粒子的引导者可以是父代群体中稀疏程度最大的个体或者是按照二进制随机竞赛选择方法从父代群体中选择的一个个体,具体哪一种方式发挥作用依赖于预先设定的概率。另外,引入稀疏程度概念来评价粒子在目标函数空间的分布。6个算例的结果表明,与NSGA Ⅱ及最新的两种MOPSO算法(CLMOPSO 和 EM MOPSO)相比,新算法是一个有效、稳定的算法。 相似文献
6.
基于NSGA-Ⅱ和MOPSO融合的一种多目标优化算法 总被引:1,自引:0,他引:1
用多目标粒子群优化(MOPSO)算法的粒子位置更新模式替代NSGA-Ⅱ的交叉操作,获得一个新的算法(NSGA-Ⅱ-MOPSO)。为使这两种差异较大的算法实现无缝融合,在NSGA-Ⅱ算法范围内对MOPSO中特有的概念粒子及其速度、Pbest、引导者进行处理:1)粒子对应于NSGA-Ⅱ中子代群体的个体;2)不再使用粒子速度概念;3)不再使用粒子Pbest概念,代之以从父代群体中为每个粒子的每一维寻找一个最近的该粒子非支配个体;4)每一个粒子的引导者可以是父代群体中稀疏程度最大的个体或者是按照二进制随机竞赛选择方法从父代群体中选择的一个个体,具体哪一种方式发挥作用依赖于预先设定的概率。另外,引入稀疏程度概念来评价粒子在目标函数空间的分布。6个算例的结果表明,与NSGA-Ⅱ及最新的两种MOPSO算法(CLMOPSO和EM-MOPSO)相比,新算法是一个有效、稳定的算法。 相似文献
7.
粒子群算法及其在布局优化中的应用 总被引:3,自引:0,他引:3
复杂工程布局(如卫星舱布局)方案设计问题,在理论上属带性能约束的布局优化问题(NPC问题),很难求解。论文以卫星舱布局为例,将粒子群算法(PSO)应用于布局问题,构造此类问题的粒子表达方法,建立了此类问题的粒子群算法。文中通过3个算例(其中一个为已知最优解的算例)的数值计算,验证了该算法的可行性和有效性。 相似文献
8.
针对MOPSO优化算法在优化多目标问题当中收敛程度较差和容易进入部分最优的缺点,提出一种基于高斯变异和自适应参考点融合的MOPSO优化算法。利用高斯变异位置更新方法改善解集提前停止寻优现象,提高MOPSO优化算法在寻找最优过程中寻找解集的多样性;采用自适应参考点的外部档案维护策略,将收敛性较差的粒子剔除,提高算法的收敛性。实验结果表明:改进的MOPSO算法同传统的MOPSO算法相比,反向代距离和超体积比有了明显的改善,具有更好的解集多样性和收敛性。 相似文献
9.
粒子群优化算法在多目标优化中的应用与仿真 总被引:4,自引:1,他引:3
该文结合经济多目标优化的实际问题,对粒子群算法的初始化进行了改进,在给定范围内进行初始化,并且对于复杂域约束优化问题,给出了其实现与仿真。 相似文献
10.
利用多目标粒子群优化算法对电梯群控系统进行优化,建立电梯群控系统响应呼梯信号的综合评价目标函数,并对电梯群控系统的性能指标进行评估,从而确定最佳派梯方案. 相似文献
11.
通过设计一种Pareto解集过滤器,并在此基础上给出多目标优化条件下的微粒群算法群体停滞判断准则,基于该准则提出了一种多目标微粒群优化算法。算法利用Pareto解集过滤器提高了候选解的多样性,并使用图形法将所提算法与经典的多目标优化进化算法在一组标准测试函数上进行了比较,结果表明算法具有更好的搜索效率。 相似文献
12.
13.
提出一种带两类正态变异的多目标粒子群算法,其中一类变异有助于在非劣解的邻域内发现新的非劣解,另一类变异可以分散粒子群.将搜索过程分为3个阶段,在每个阶段引导粒子的选择采用不同的针对性策略.数值结果表明,所提出的算法能够显著提高解的多样性和收敛性. 相似文献
14.
基于决策者偏好区域的多目标粒子群算法研究* 总被引:2,自引:3,他引:2
多目标优化问题中,决策者往往只对目标空间的某一区域感兴趣,因此需要在这一特定的区域能够得到比较稠密的Pareto解,但传统的方法却找出全部的Pareto前沿,决策效率不高。针对该问题,给出了基于决策者偏好区域的多目标粒子群优化算法。它只求出与决策者偏好区域相关的部分Pareto最优集,从而减少了进化代数,加快收敛速度,有利于决策者进行更有效的决策。算法把解与偏好区域的距离作为影响引导者选择和剪枝策略的一个因素,运用格栅方法实现解在Pareto边界分布的均匀性。仿真结果表明该算法是有效的。 相似文献
15.
在分析多目标优化问题的基础上,提出一种随机多目标微粒群算法,该算法采用在已经获得的Pareto解集中随机选取的两个Pareto解作为微粒更新公式中的pbest和gbest微粒,从而使微粒群的多样性增加,获得均匀分布的Pareto前沿。之后利用有限齐次马尔科夫理论给出了SMOPSO算法的收敛性进行了分析,证明SMOPSO算法以概率1收敛于极小元。最后通过对两个常用多目标函数的仿真实验,验证了算法的有效性。 相似文献
16.
针对目前多目标粒子群优化算法的收敛性能和非劣解的多样性不能同时得到满足等缺陷,提出一种基于多策略的多目标粒子群优化算法(Multi-Objective Particle Swarm Optimization algorithm for Multi-Strategy,MS-MOPSO)。采用非支配排序和拥挤距离排序相结合策略,重新划分外部种群和进化种群;采用小生境选择策略,在外部种群中选择最佳粒子作为领导粒子,用于领导进化种群中粒子的进化;在进化种群中利用多尺度高斯变异策略,平衡算法的全局搜索和局部精确搜索;采用邻域认知个体极值更新策略,不断更新个体极值。将该算法应用到典型的多目标测试函数,并与其他多目标优化算法进行对比分析,测试结果表明该算法中四个策略的有效性和互补性,同时验证了该算法不但具有较好的收敛性和收敛速度,而且该算法最优解的分布具有良好的均匀性和多样性。 相似文献
17.
为了优化资源的部署调度,需要考虑处理费用、传输费用,并提高云计算的性能.对云计算环境下特点进行了研究,把云计算环境下的数据部署和任务调度问题映射为处理交互图,对处理交互图进行分析、提出了多目标优化模型,并通过粒子群算法对多目标模型进行优化.仿真结果表明,该多目标优化模型和算法不但能优化处理时间、传输时间,也能优化处理费用和传输费用. 相似文献
18.
粒子群优化算法求解多目标优化问题存在早熟收敛和后期收敛速性差的不足,解的分布性也有待提高。为此设计一种新的多目标粒子群优化算法:对寻求粒子最优解的sigma方法进行改进,提出一种综合非支配解密度信息和sigma值的最优解求解机制。对变异粒子速度进行矢量扰动变异;对停滞粒子进行位置变异,有效避免算法的早熟收敛问题。测试结果表明,所提出的算法在收敛性和解的分布性、多样性方面较经典的算法具有明显的优势。 相似文献
19.
不确定可靠性优化问题的多目标粒子群优化算法 总被引:1,自引:0,他引:1
针对元件可靠性为区间值的系统可靠性优化问题, 提出一种区间多目标粒子群优化方法. 首先, 建立问题的区间多目标优化模型; 然后, 利用粒子群算法优化该模型, 定义一种不精确Pareto 支配关系, 并给出编码、约束处理、外部存储器更新、领导粒子选择等关键问题的解决方法; 最后, 将该方法应用于可靠性优化问题实例, 验证了方法的有效性.
相似文献20.
针对多目标粒子群优化算法在求解约束优化问题时存在难以兼顾收敛性能和求解质量这一问题,提出一种基于免疫网络的改进多目标粒子群优化算法.该算法通过免疫网络互通种群最优信息达到粒子群算法与人工免疫网络算法的协同搜索,同时给出了速度迁移策略、自适应方差变异策略和基于聚类的免疫网络策略.最后将所提出的方法应用于求解电弧炉供电优化模型,达到了减少电量消耗、缩短冶炼时间、延长炉衬使用寿命的目的,同时表明了该算法的有效性. 相似文献