首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This investigation reports a new type of solar water heating system without water pipes on the collector surface or a separate storage tank. The water to be heated continuously flows perpendicularly from an upper transparent cover to a porous absorber and is stored in a small volume beneath this assembly. Three different systems were designed, manufactured and tested but only one proved to be successful; this design indicated higher thermal efficiency compared to conventional collectors at high flow rates whereas at low flow rates the opposite is true.  相似文献   

2.
A low cost collector-cum-storage type solar water heater has been developed. The cost of the heater is reduced by replacing window glass cover with 0.2 mm thick PVC film to avoid glass breakage in transportation and maintenance. In this paper the performances of solar water heaters having double glazing of PVC and glass have been compared. It was found that their performances are similar. Moreover, by providing an insulating cover in the night, the water remains warm till next morning for taking a bath etc. in the early hours when there is no sunshine.  相似文献   

3.
The performance of two R-11-charged integrated solar water heater collectors was investigated experimentally for forced and natural circulation water flows. The heat transfer from the refrigerant loop to the hot water storage tank took place through a condenser of novel design integrated within the collector frame. The effect of the condenser inclination on the system efficiency was remarkable for natural circulation water flow but had no significant effect for forced circulation flow. The difference in thermal response between the refrigerant and water loops caused buildup of stored energy in the condenser. This energy affected the buoyancy forces and generated flow pulsation that caused a harmonic-like variation of the system efficiency. This effect vanished with forced water circulation flow. The system efficiency varied between 20 and 50% depending on the solar insolation.  相似文献   

4.
A cylindrical collector-cum-storage type solar water heater has been designed, developed and tested. Its year round performance has been carried out and reported in this paper. The heater can provide 50 litres of hot water at 50–60°C in the afternoon and a temperature of 35°C can be retained till the next day for early morning use. The heater receives approximately 30% more radiation as compared to a flat surface. The economics of the heater has been worked out and it has been found that the cost can be recovered within one year.  相似文献   

5.
We present a simplified method which could be used to calculate, to a first approximation, the energy losses from the sides of a solar collector/water heater. The inclusion of energy losses through the side walls of a reasonable thickness reduce the efficiency of the system by about 5%. The integrated side energy losses for the whole day are not equal for the various segments of the wall. Hence, it will be economical to construct wedge shape walls, thickness decreasing downward, instead of usual rectangular walls.  相似文献   

6.
This article investigates experimentally the long-term thermal performance of a two-phase thermosyphon solar water heater and compares the results with the conventional systems. Experimental investigations are conducted to obtain the system thermal efficiencies from the hourly, daily and long-term performance tests. Different heat transfer mechanisms, including natural convection, geyser boiling, nucleate boiling and film-wise condensation, are observed in the two-phase thermosyphon solar water heater while solar radiation varies. The thermal performance of the proposed system is compared with that of four conventional solar water heaters. Results show that the proposed system achieves system characteristic efficiency 18% higher than that of the conventional systems by reducing heat loss for the two-phase thermosyphon solar water heater.  相似文献   

7.
The operation of a continuous flow type domestic solar water heater is explained with the help of a schematic diagram. Steady state thermal analysis of such a water heater is carried out. A water heater of this type with a collector area of 1 m2 is subjected to tests. The experimental results are compared with predicted results. The experimental results have also been compared with those obtained from a water heater operating on thermosiphon flow. The performance of the continuous flow type water heater is shown to be comparable to that of the thermosiphon flow type. It is concluded that, in the Indian context, the continuous flow type water heater has more advantages than the thermosiphon flow type water heater in view of its low capital cost and the ease of operation and maintenance.  相似文献   

8.
This paper presents an experimental investigation along with a theoretical model of a double-glazed flat plate solar air heater connected in series with an integrated rock bed collector-cumstorage unit. Predictions are made regarding the effects of heat transfer coefficient and number of glazings on the performance of the air heater. The model fits quite well with the experimental observations.  相似文献   

9.
A simple analysis of an underground shallow solar pond water heater has been presented. The effect of a thermal trap at the top of the system has also been incorporated in the analysis. Using the model, the effect of various system parameters, viz. thermal trap thickness, heat capacity of water mass, flow rate and duration of flow rate have been studied in detail. Numerical calculations have been made for a typical winter day at New Delhi (India). It is concluded that the system with thermal trap gives better performance in comparison with a system with a movable insulation system.  相似文献   

10.
A solar water heater constructed from readily available materials in the countryside has earlier been discussed in the continuous flow mode. Water flows in the tubes at a constant rate throughout the day. In any realistic situation, however, the rate of flow will be a function of time depending on the requirements of the user. In this paper a theoretical method is developed which is used to predict the outlet water temperature of the time dependent flows. The effect of various design parameters like the position of the water pipes, choice of sensible heat storage material etc. are discussed taking different functions of rate of flow. The inexpensive water heater can provide hot water for a small household even in the late evening hours provided no heat is withdrawn from the system during the day time.  相似文献   

11.
The performance of a novel device has been tested. The device can be used as a collector cum storage type solar water heater during the winter, and, with minor adjustments, it can be used as a hot-box solar cooker. The device can provide hot water at 50–60°C in the evening, which can be maintained at 40–45°C until the following morning. It can also be used for cooking food for about 40 people. The efficiencies of the device as a solar water heater and as a solar cooker have been found to be 67.7% and 29.8%, respectively. The payback period varies between 1.64 to 5.90 years depending on the fuel it replaces. The payback periods are of increasing length with respect to the fuels firewood, coal, electricity, LPG and kerosene.  相似文献   

12.
The research goal was to develop a new solar water heater system (SWHS) that used a solar water pump instead of an electric pump. The pump was powered by the steam produced from a flat plate collector. Therefore, heat could be transferred downward from the collector to a hot water storage tank. The designed system consisted of four panels of flat plate solar collectors, an overhead tank installed at an upper level and a large water storage tank with a heat exchanger at a lower level. Discharge heads of 1, 1.5 and 2 m were tested. The pump could operate at the collector temperature of about 70–90 °C and vapor gage pressure of 7–14 kPa. It was found that water circulation within the SWHS ranged between 12 and 59 l/d depending on the incident solar intensity and system discharge head. The average daily pump efficiency was about 0.0014–0.0019%. Moreover, the SWHS could have a daily thermal efficiency of about 7–13%, whereas a conventional system had 30–60% efficiency. The present system was economically comparable to a conventional one.  相似文献   

13.
An experimental investigation is carried out on a forced circulation solar water heater to assess its performance under various operating conditions. The system consisted of two identical collectors of total absorber area of 3.45 m2 and a storage tank of 200 litre capacity. Experiments were carried out during clear days with and without system loading for two water mass flow rates through the collector; namely 0.1305 kg/s and 0.06525 kg/s. The system was operated without thermostat control and with thermostat control at maximum and minimum settings. The collector efficiency improved with system loading. The improvement was better with increased hot water withdrawal from the system.  相似文献   

14.
The performance of a thermosyphon solar water heater was studied analytically and experimentally. A finite-difference model was used to predict year-round performance. Tests were conducted on an experimental heater subjected to acutal weather conditions in Benghazi, Libya. Satisfactory qualitative and quantitative agreement was found between experimental and predicted results. A storage volume of 60 liters per unit collector area was found to be optimum for Benghazi conditions. The day-end temperature was found to vary between 23° and 51°C for the test period, which occurred in winter, with an average of 41°C.  相似文献   

15.
An experimental investigation has been carried out on a thermosyphon solar water heater. The system consisted of a flat-plate collector of 1.5 m2 absorber area with 21 tubes/m width and storage tank of 125 litre capacity. Experiments were carried out for both cloudy and clear weather conditions in winter and summer. The hourly system performance was evaluated for all test conditions. The final mean tank temperature was measured daily which enabled the calculation of the possible contribution of solar energy for domestic hot water supply in Basrah, Iraq (latitude 30.76°N). The system was tested at both no-load and loading conditions. Intermittent and continuous load was imposed, and system performance was evaluated for each condition.  相似文献   

16.
The design and applicability of solar water heating systems requires a satisfactory prediction of collector outlet water temperature and the useful energy delivered over a wide range of climatic conditions. Transient system simulation program is extensively used for this purpose, and recently artificial neural networks have also been considered. This article presents the results of a study carried out to compare the performance prediction by these two methods in a tropical location under different climatic conditions. Experimental collector outlet temperature, storage tank temperatures and the useful energy values were compared with the results of the simulation by these two methods. Hourly and daily values under different conditions were also compared. Details of the experimental set up and observations, the modeling procedure used and the statistical measures to compare the capabilities of the two methods under clear, partly cloudy, and cloudy conditions have been described. The prediction of both the methods are found to be good for both hourly and daily estimations, and the specific requirements for satisfactory performance prediction of each of the methods have been detailed.  相似文献   

17.
O. Helal  B. Chaouachi  S. Gabsi 《Solar Energy》2011,85(10):2421-2432
An integrated collector storage (ICS) consisting of a single cylindrical horizontal tank placed in a reflector composed of three parabolic branches is designed and geometric characteristics are determined. The suggested design aims to cover the need of hot water of a family composed of four persons. Based on this target, its geometric characteristics: reflector geometry, aperture, reflector length, are derived.The comparison between this system and two other systems of solar water heater, composed of a storage tank with asymmetrical CPC and symmetrical CPC, shows important thermal performances despite the simplicity and the little cost of our collector. The first experimental results are given and its comparison with the theoretical results demonstrates a good agreement.  相似文献   

18.
The effect of thermal conductivity of the absorber plate of a solar collector on the performance of a thermo-siphon solar water heater is found by using the alternative simulation system. The system is assumed to be supplied of hot water at 50 °C and 80 °C whereas both are used in domestic and industrial purposes, respectively. According to the Rand distribution profile 50, 125 and 250 l of hot water are consumed daily. The condition shows that the annual solar fraction of the planning functions and the collector's configuration factors are strongly dependent on the thermal conductivity for its lower values. The less dependence is observed beyond a thermal conductivity of 50 W/m °C for the solar improper fraction and above 100 W/m °C for the configuration factors. In addition, the number of air ducts and total mass flow rate are taken to show that higher collector efficiency is obtained under the suitable designing and operating parameters. Different heat transfer mechanisms, adding natural convection, vapor boiling, cell nucleus boiling and film wise condensation is observed in the thermo-siphon solar water heater with various solar radiations. From this study, it is found that the solar water heater with a siphon system achieves system characteristic efficiency of 18% higher than that of the conventional system by reducing heat loss for the thermo-siphon solar water heater.  相似文献   

19.
An inexpensive solar water heater of about 701 capacity, combining collection and storage, has been tested. The blackened plate (1.5 m2) of the collector-cum-storage unit of this heater absorbs solar energy and transfers it to the water stored in its enclosure (140 × 90 × 5.5 cm), the water being in direct contact with the absorber plate. The collector-cum-storage unit is enclosed in a wooden box with 10 cm thick glass wool insulation at the bottom and one glass cover.Experiments have been carried out to test the performance of the water heater under four different modes of operation: (a) water circulation with a small pump (b) natural convection conditions (c) water draw-offs taking place when the water is around 50–60°C (d) water flowing continuously past the absorber plate with flow rates of 38, 60, and 75.9 kg/hr. The day-long collection efficiency under the first two modes has been ascertained to be around 50–53 per cent for a rise in water temperature of 57-50°C. For water temperatures between 60 and 70°C, the collection efficiency is around 65-58 per cent. No appreciable difference in the collection efficiencies has been observed under the first two modes of operation. The average collection efficiency under the third mode of testing has been found to be 64.8 per cent with 202.61 of water heated from 38.5 to 58°C. In continuous flow of water past the absorber plate, a collection efficiency as high as 71.8 per cent was attained at the mass flow rate of 75.9 kg/hr, when tested under steady flow conditions. If no water is drawn off during the day, temperatures between 50 and 60°C are reached at about 11 a.m.–12 noon, 60–70°C at 12 noon–1 p.m., and 70–80°C at about 1–2 p.m., the maximum being as high at 86°C by about 3.30 p.m.In addition a theoretical calculation based on Hottel and Woertz equation for the overall heat loss coefficient between the absorber plate and the surroundings for the hourly rise in water temperature shows a very good agreement with the experimentally measured values of water temperatures.  相似文献   

20.
This communication reports the design details, performance and testing of a step basin type solar water heater-cum-solar still. The combined efficiency of the system is 64.5 per cent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号