首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have fabricated the transparent bottom gate thin-film transistors (TFTs) using Al and Sn-doped zinc indium oxide (AT-ZIO) as an active layer. The AT-ZIO active layer was deposited by RF magnetron sputtering at room temperature, and the AT-ZIO TFT showed a field effect mobility of 15.6 $ hbox{cm}^{2}/hbox{Vs}$ even before annealing. The mobility increased with increasing the $hbox{In}_{2}hbox{O}_{3}$ content and postannealing temperature up to 250 $^{circ}hbox{C}$. The AT-ZIO TFT exhibited a field effect mobility of 30.2 $hbox{cm}^{2}/hbox{Vs}$, a subthreshold swing of 0.17 V/dec, and an on/off current ratio of more than $10^{9}$ .   相似文献   

2.
The extraction of the effective mobility on $hbox{In}_{0.53} hbox{Ga}_{0.47}hbox{As}$ metal–oxide–semiconductor field-effect transistors (MOSFETs) is studied and shown to be greater than 3600 $hbox{cm}^{2}/hbox{V} cdot hbox{s}$. The removal of $C_{rm it}$ response in the split $C$$V$ measurement of these devices is crucial to the accurate analysis of these devices. Low-temperature split $C$$V$ can be used to freeze out the $D_{rm it}$ response to the ac signal but maintain its effect on the free carrier density through the substrate potential. Simulations that match this low-temperature data can then be “warmed up” to room temperature and an accurate measure of $Q_{rm inv}$ is achieved. These results confirm the fundamental performance advantages of $hbox{In}_{0.53}hbox{Ga}_{0.47}hbox{As}$ MOSFETs.   相似文献   

3.
We report on performance improvement of $n$-type oxide–semiconductor thin-film transistors (TFTs) based on $hbox{TiO}_{x}$ active channels grown at 250 $^{circ}hbox{C}$ by plasma-enhanced atomic layer deposition. TFTs with as-grown $hbox{TiO}_{x}$ films exhibited the saturation mobility $(mu_{rm sat})$ as high as 3.2 $hbox{cm}^{2}/hbox{V}cdothbox{s}$ but suffered from the low on–off ratio $(I_{rm ON}/I_{rm OFF})$ of $hbox{2.0} times hbox{10}^{2}$. $hbox{N}_{2}hbox{O}$ plasma treatment was then attempted to improve $I_{rm ON}/I_{rm OFF}$. Upon treatment, the $hbox{TiO}_{x}$ TFTs exhibited $I_{rm ON}/I_{rm OFF}$ of $hbox{4.7} times hbox{10}^{5}$ and $mu_{rm sat}$ of 1.64 $hbox{cm}^{2}/hbox{V}cdothbox{s}$, showing a much improved performance balance and, thus, demonstrating their potentials for a wide variety of applications such as backplane technology in active-matrix displays and radio-frequency identification tags.   相似文献   

4.
Double-reduced-surface-field (RESURF) MOSFETs with $hbox{N}_{2}hbox{O}$ -grown oxides have been fabricated on the 4H-SiC $(hbox{000} bar{hbox{1}})$ face. The double-RESURF structure is effective in reducing the drift resistance, as well as in increasing the breakdown voltage. In addition, by utilizing the 4H-SiC $(hbox{000}bar{hbox{1}})$ face, the channel mobility can be increased to over 30 $hbox{cm}^{2}/hbox{V}cdothbox{s}$, and hence, the channel resistance is decreased. As a result, the fabricated MOSFETs on 4H-SiC $( hbox{000}bar{hbox{1}})$ have demonstrated a high breakdown voltage $(V_{B})$ of 1580 V and a low on-resistance $(R_{rm ON})$ of 40 $hbox{m}Omega cdothbox{cm}^{2}$. The figure-of-merit $(V_{B}^{2}/R_{rm ON})$ of the fabricated device has reached 62 $hbox{MW/cm}^{2}$, which is the highest value among any lateral MOSFETs and is more than ten times higher than the “Si limit.”   相似文献   

5.
The fluctuation of RF performance (particularly for $f_{T}$ : cutoff frequency) in the transistors fabricated by 90-nm CMOS technology has been investigated. The modeling for $f_{T}$ fluctuation is well fitted with the measurement data within approximately 1% error. Low-$V_{t}$ transistors (fabricated by lower doping concentration in the channel) show higher $f_{T}$ fluctuation than normal transistors. Such a higher $f_{T}$ fluctuation results from $C_{rm gg}$ (total gate capacitance) variation rather than $g_{m}$ variation. More detailed analysis shows that $C_{rm gs} + C_{rm gb}$ (charges in the channel and the bulk) are predominant factors over $C_{rm gd}$ (charges in LDD/halo region) to determine $C_{rm gg}$ fluctuation.   相似文献   

6.
GaN/AlN/AlGaN/GaN nanowire metal–insulator–semiconductor field-effect transistors (MISFETs) have been fabricated for the first time with submicrometer gate lengths. Their microwave performances were investigated. An intrinsic current-gain cutoff frequency $(F_{T})$ of 5 GHz as well as an intrinsic maximum available gain $(F_{rm MAX})$ cutoff frequency of 12 GHz have been obtained for the first time and associated with a gate length of 0.5 $muhbox{m}$. These results show the great potentiality of GaN-based nanowire FETs for microwave applications.   相似文献   

7.
For a variety of solar cells, it is shown that the single exponential $J{-}V$ model parameters, namely—ideality factor $eta$ , parasitic series resistance $R_{s}$, parasitic shunt resistance $R_{rm sh}$, dark current $J_{0}$, and photogenerated current $J_{rm ph}$ can be extracted simultaneously from just four simple measurements of the bias points corresponding to $V_{rm oc}$, $sim!hbox{0.6}V_{rm oc}$, $J_{rm sc}$, and $sim! hbox{0.6}J_{rm sc}$ on the illuminated $J{-}V$ curve, using closed-form expressions. The extraction method avoids the measurements of the peak power point and any $dJ/dV$ (i.e., slope). The method is based on the power law $J{-}V$ model proposed recently by us.   相似文献   

8.
In this letter, a polycrystalline-silicon thin-film transistor (poly-Si TFT) with a high- $k$ $hbox{PrTiO}_{3}$ gate dielectric is proposed for the first time. Compared to TFTs with a $hbox{Pr}_{2}hbox{O}_{3}$ gate dielectric, the electrical characteristics of poly-Si TFTs with a $hbox{PrTiO}_{3}$ gate dielectric can be significantly improved, such as lower threshold voltage, smaller subthreshold swing, higher $I_{rm on}/I_{rm off}$ current ratio, and larger field-effect mobility, even without any hydrogenation treatment. These improvements can be attributed to the high gate capacitance density and low grain-boundary trap state. All of these results suggest that the poly-Si TFT with a high- $k$ $hbox{PrTiO}_{3}$ gate dielectric is a good candidate for high-speed and low-power display driving circuit applications in flat-panel displays.   相似文献   

9.
For the first time, internal spacers have been introduced in multichannel CMOSFET (MCFET) structures, featuring a decrease of the intrinsic $CV/I$ delay by 39%. The process steps introduced for this new MCFET technological option are studied and optimized in order to achieve excellent $I_{rm ON}/I_{rm OFF}$ characteristics (NMOS: 2.33 $hbox{mA}/muhbox{m}$ at 27 $hbox{pA}/muhbox{m}$ and PMOS: 1.52 $hbox{mA}/muhbox{m}$ at 38 $hbox{pA}/muhbox{m}$). A gate capacitance $C_{rm gg}$ reduction of 32% is measured, thanks to $S$-parameter extraction. Moreover, a significant improvement of the analogical figure of merit is measured compared with optimized fully depleted silicon-on-insulator planar reference; the voltage gain $A_{rm VI}(= g_{m}/g_{rm ds})$ is improved by 92%.   相似文献   

10.
This letter reports on the implementation of high carbon content and high phosphorous content $hbox{Si}_{1 - x}hbox{C}_{x}$ layers in the source and drain regions of n-type MOSFET in a 65-nm-node integration scheme. The layers were grown using a novel epitaxial process. It is shown that by implementing stressors with $x approx hbox{0.01}$ , nMOSFET device performance is enhanced by up to 10%, driving 880 $mu hbox{A}/muhbox{m}$ at 1-V $V_{rm DD}$. It is also demonstrated that the successful implementation of $hbox{Si}_{1 - x} hbox{C}_{x}$ relies on the careful choice of integration and epitaxial layer parameters. There is a clear impact of the postepitaxial implantation and thermal treatment on the retained substitutional C content $([C_{rm sub}])$. Furthermore, adding a Si capping layer on top of the $hbox{Si}_{1 - x}hbox{C}_{x}$, greatly improves upon the stressors' stability during the downstream processing and the silicide sheet resistance.   相似文献   

11.
Low-temperature polycrystalline-silicon thin-film transistors (LTPS-TFTs) with high- $kappa$ gate dielectrics and plasma surface treatments are demonstrated for the first time. Significant field-effect mobility $mu_{rm FE}$ improvements of $sim$86.0% and 112.5% are observed for LTPS-TFTs with $hbox{HfO}_{2}$ gate dielectric after $hbox{N}_{2}$ and $ hbox{NH}_{3}$ plasma surface treatments, respectively. In addition, the $hbox{N}_{2}$ and $ hbox{NH}_{3}$ plasma surface treatments can also reduce surface roughness scattering to enhance the field-effect mobility $mu_{rm FE}$ at high gate bias voltage $V_{G}$, resulting in 217.0% and 219.6% improvements in driving current, respectively. As a result, high-performance LTPS-TFT with low threshold voltage $V_{rm TH} sim hbox{0.33} hbox{V}$, excellent subthreshold swing S.S. $sim$0.156 V/decade, and high field-effect mobility $mu_{rm FE} sim hbox{62.02} hbox{cm}^{2}/hbox{V} cdot hbox{s}$ would be suitable for the application of system-on-panel.   相似文献   

12.
Newly proposed mobility-booster technologies are demonstrated for metal/high- $k$ gate-stack n- and pMOSFETs. The process combination of top-cut SiN dual stress liners and damascene gates remarkably enhances local channel stress particularly for shorter gate lengths in comparison with a conventional gate-first process. Dummy gate removal in the damascene gate process induces high channel stress, because of the elimination of reaction force from the dummy gate. PFETs with top-cut compressive stress liners and embedded SiGe source/drains are performed by using atomic layer deposition TiN/$ hbox{HfO}_{2}$ gate stacks with $T_{rm inv} = hbox{1.4} hbox{nm}$ on (100) substrates. On the other hand, nFETs with top-cut tensile stress liners are obtained by using $hbox{HfSi}_{x}/hbox{HfO}_{2}$ gate stacks with $T_{rm inv} = hbox{1.4} hbox{nm}$. High-performance n- and pFETs are achieved with $I_{rm on} = hbox{1300}$ and 1000 $muhbox{A}/muhbox{m} hbox{at} I_{rm off} = hbox{100} hbox{nA}/mu hbox{m}$, $V_{rm dd} = hbox{1.0} hbox{V}$, and a gate length of 40 nm, respectively.   相似文献   

13.
This paper presents a single-chip CMOS quad-band (850/900/1800/1900 MHz) RF transceiver for GSM/GPRS/EDGE applications which adopts a direct-conversion receiver, a direct-conversion transmitter and a fractional-N frequency synthesizer with a built-in DCXO. In the GSM mode, the transmitter delivers 4 dBm of output power with 1$^{circ}$ RMS phase error and the measured phase noise is ${-}$164.5 dBc/Hz at 20 MHz offset from a 914.8$~$MHz carrier. In the EDGE mode, the TX RMS EVM is 2.4% with a 0.5 $~$dB gain step for the overall 36 dB dynamic range. The RX NF and IIP3 are 2.7 dB/ ${-}$12 dBm for the low bands (850/900 MHz) and 3 dB/${-}$ 11 dBm for the high bands (1800/1900 MHz). This transceiver is implemented in 0.13 $mu$m CMOS technology and occupies 10.5 mm$^{2}$ . The device consumes 118 mA and 84 mA in TX and RX modes from 2.8 V, respectively and is housed in a 5$,times,$ 5 mm$^{2}$ 40-pin QFN package.   相似文献   

14.
We present a detailed experimental and theoretical study of the ultrahigh repetition rate AO $Q$ -switched ${rm TEM}_{00}$ grazing incidence laser. Up to 2.1 MHz $Q$-switching with ${rm TEM}_{00}$ output of 8.6 W and 2.2 MHz $Q$ -switching with multimode output of 10 W were achieved by using an acousto-optics $Q$ -switched grazing-incidence laser with optimum grazing-incidence angle and cavity configuration. The crystal was 3 at.% neodymium doped Nd:YVO$_{4}$ slab. The pulse duration at 2 MHz repetition rate was about 31 ns. The instabilities of pulse energy at 2 MHz repetition rate were less than ${pm}6.7hbox{%}$ with ${rm TEM}_{00}$ operation and ${pm}3.3hbox{%}$ with multimode operation respectively. The modeling of high repetition rate $Q$-switched operation is presented based on the rate equation, and with the solution of the modeling, higher pump power, smaller section area of laser mode, and larger stimulated emission cross section of the gain medium are beneficial to the $Q$-switched operation with ultrahigh repetition rate, which is in consistent with the experimental results.   相似文献   

15.
The positive bias temperature instability (PBTI) characteristics of contact-etch-stop-layer (CESL)-strained $hbox{HfO}_{2}$ nMOSFET are thoroughly investigated. For the first time, the effects of CESL on an $hbox{HfO}_{2}$ dielectric are investigated for PBTI characteristics. A roughly 50% reduction of $V_{rm TH}$ shift can be achieved for the 300-nm CESL $hbox{HfO}_{2}$ nMOSFET after 1000-s PBTI stressing without obvious $ hbox{HfO}_{2}/hbox{Si}$ interface degradation, as demonstrated by the negligible charge pumping current increase ($≪$ 4%). In addition, the $hbox{HfO}_{2}$ film of CESL devices has a deeper trapping level (0.83 eV), indicating that most of the shallow traps (0.75 eV) in as-deposited $ hbox{HfO}_{2}$ film can be eliminated for CESL devices.   相似文献   

16.
We report on the fabrication of ZnO-based dual gate (DG) thin-film transistors (TFTs) with 20-nm-thick $hbox{Al}_{2}hbox{O}_{3}$ for both top and bottom dielectrics, which were deposited by atomic layer deposition on glass substrates at 200 $^{ circ}hbox{C}$. As characterized with single gate (SG), DG, and ground plane (GP) modes, our ZnO TFTs are well operated under 5 V. DG-mode TFT showed a field mobility of 0.38 $ hbox{cm}^{2}/hbox{V} cdot hbox{s}$, a high saturation current of 6 $muhbox{A}$, and an on/off current ratio of $sim hbox{10}^{6}$, while SG- and GP-mode TFTs showed a similar value of mobility but with lower current. Using DG and GP modes, nor gate operation was well demonstrated.   相似文献   

17.
The effect of temperature on the small-signal radio-frequency (RF) performance of submicron AlGaN/GaN high-electron-mobility transistors on SiC has been studied from room temperature (RT) up to 600 K. A relation between ambient and channel temperatures has been established by means of finite-element simulations. The thermal behavior of the intrinsic parameters $C_{rm gs}$, $C_{rm gd}$, $g_{m, {rm int}}$, and $g_{rm ds}$ has been extracted accurately from RF measurements by means of the small-signal equivalent circuit. Main dc parameters $(I_{D}, g_{m, {rm ext}})$ show reductions close to 50% between RT and 600 K, mainly due to the decrease in the electron mobility and drift velocity. In the same range, $f_{T}$ and $f_{max}$ suffer a 60% decrease due to the reduction in $g_{m, {rm ext}}$ and a slight increase of $C_{rm gs}$ and $C_{rm gd}$. An anomalous thermal evolution of $C_{rm gd}$ at low $I_{D}$ has been identified, which is indicative of the presence of traps.   相似文献   

18.
This paper proposes to merge an I/Q current-commutating mixer with a noise-canceling balun-LNA. To realize a high bandwidth, the real part of the impedance of all RF nodes is kept low, and the voltage gain is not created at RF but in baseband where capacitive loading is no problem. Thus a high RF bandwidth is achieved without using inductors for bandwidth extension. By using an I/Q mixer with 25% duty-cycle LO waveform the output IF currents have also 25% duty-cycle, causing 2 times smaller DC-voltage drop after IF filtering. This allows for a 2 times increase in the impedance level of the IF filter, rendering more voltage gain for the same supply headroom. The implemented balun-LNA-I/Q-mixer topology achieves $> ,$18 dB conversion gain, a flat noise figure $≪, $5.5 dB from 500 MHz to 7 GHz, IIP2$ ={+}$20 dBm and IIP3 $={-}$3 dBm. The core circuit consumes only 16 mW from a 1.2 V supply voltage and occupies less than ${hbox{0.01~mm}}^{2}$ in 65 nm CMOS.   相似文献   

19.
We provide the first report of the structural and electrical properties of $hbox{TiN/ZrO}_{2}$/Ti/Al metal–insulator–metal capacitor structures, where the $hbox{ZrO}_{2}$ thin film (7–8 nm) is deposited by ALD using the new zirconium precursor ZrD-04, also known as Bis(methylcyclopentadienyl) methoxymethyl. Measured capacitance–voltage ($C$$V$) and current–voltage ( $I$$V$) characteristics are reported for premetallization rapid thermal annealing (RTP) in $hbox{N}_{2}$ for 60 s at 400 $^{circ}hbox{C}$, 500 $^{circ}hbox{C}$, or 600 $^{ circ}hbox{C}$. For the RTP at 400 $^{circ}hbox{C}$ , we find very low leakage current densities on the order of nanoamperes per square centimeter at a gate voltage of 1 V and low capacitance equivalent thickness values of $sim$ 0.9 nm at a gate voltage of 0 V. The dielectric constant of $ hbox{ZrO}_{2}$ is 31 $pm$ 2 after RTP treatment at 400 $^{circ}hbox{C}$.   相似文献   

20.
This letter demonstrates a vertical silicon-nanowire (SiNW)-based tunneling field-effect transistor (TFET) using CMOS-compatible technology. With a $hbox{Si} hbox{p}^{+}{-}hbox{i}{-} hbox{n}^{+}$ tunneling junction, the TFET with a gate length of $sim$200 nm exhibits good subthreshold swing of $sim$ 70 mV/dec, superior drain-induced-barrier-lowering of $sim$ 17 mV/V, and excellent $I_{rm on} {-} I_{rm off}$ ratio of $sim!!hbox{10}^{7}$ with a low $I_{rm off} (sim!!hbox{7} hbox{pA}/muhbox{m})$. The obtained 53 $muhbox{A}/muhbox{m} I_{rm on}$ can be further enhanced with heterostructures at the tunneling interface. The vertical SiNW-based TFET is proposed to be an excellent candidate for ultralow power and high-density applications.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号