首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Room-temperature continuous-wave operation of a singlemode GaInAsSb/GaSb/AlGaAsSb distributed feedback (DFB) laser is presented at a record long emission wavelength for this material system of 2.843 /spl mu/m. The threshold current at 20/spl deg/C is 75 mA. Mode selection was realised by metal gratings laterally patterned to a ridge waveguide. By varying the grating period, DFB emission from 2.738 up to 2.843 /spl mu/m is obtained.  相似文献   

2.
A broad-area laser diode combined with a planar external waveguide cavity operates in the fundamental mode and reshapes the output emission into a circular 15/spl deg/ beam. A 500 /spl mu/m-long by 40 /spl mu/m-wide laser diode with uncoated facets coupled with the uncoated ModeReShaper (MRS) planar chip has a coupling efficiency of /spl sim/40% and stabilised the fundamental mode at drive currents up to three-times threshold.  相似文献   

3.
GaInAsSb-AlGaAsSb multiple quantum-well (QW) lasers with an emission wavelength of 2.81 /spl mu/m are reported. The ridge waveguide lasers with highly strained QWs show continuous-wave laser emission up to 25/spl deg/C; in pulsed mode, the lasers operate up to 60/spl deg/C. For pulsed operation, a threshold current density of 360 A/cm/sup 2/ is found for devices with 30-/spl mu/m stripe width and 2-mm cavity length at room temperature. A low threshold current density at infinite length of 248 A/cm/sup 2/ is derived.  相似文献   

4.
We have realized compressively strained GaInAsSb-GaSb type-II double quantum-well lasers with an emission wavelength of 2.8 /spl mu/m. Using broad area devices, an internal absorption of 9.8 cm/sup -1/ and an internal quantum efficiency of 0.57 is determined. For the increase of the threshold current with temperature, a T/sub 0/ of 44 K is obtained. Narrow ridge waveguide lasers show continuous-wave laser operation at temperatures up to 45 /spl deg/C, with room-temperature (RT) threshold current of 37 mA. At RT, the maximum optical output power per facet of an uncoated 800/spl times/7 /spl mu/m/sup 2/ ridge waveguide laser exceeds 8 mW.  相似文献   

5.
1.6-nm spectrally spaced eight-channel semiconductor microdisk laser arrays are presented, where high-Q disk lasing modes are vertically coupled out through a common bus waveguide. The spectral channel spacing is achieved by varying the disk resonator radii from 10.6 to 10.95 /spl mu/m. Typical linewidth of 0.25 nm and side-mode suppression ratio of -20dB are observed under continuous-wave lasing operation near /spl lambda/=1.51 /spl mu/m. This is the first demonstration of integrated microresonator laser arrays.  相似文献   

6.
We report a novel intersubband transition all-optical switch with low switching energy using InGaAs-AlAs-AlAsSb coupled double quantum wells (C-DQWs) with AlAs spacer layers. Very low saturation energy density of 34 fJ//spl mu/m/sup 2/ was observed for bulk transmittance with wavelength of 1.62 /spl mu/m. Using a waveguide, whose core is 93 periods of the C-DQWs, an all optical switch with a low switching energy of 10 pJ for 10-dB extinction ratio was realized.  相似文献   

7.
We have demonstrated high-performance InGaAsN triple-quantum-well ridge waveguide (RWG) lasers fabricated using pulsed anodic oxidation. The lowest threshold current density of 675 A/cm/sup 2/ was obtained from a P-side-down bonded InGaAsN laser, with cavity length of 1600 /spl mu/m and contact ridge width of 10 /spl mu/m. The emission wavelength is 1295.1 nm. The transparency current density from a batch of unbonded InGaAsN RWG lasers was 397 A/cm/sup 2/ (equivalent to 132 A/cm/sup 2/ per well). High characteristic temperature of 138 K was also achieved from the bonded 10/spl times/1600-/spl mu/m/sup 2/ InGaAsN laser.  相似文献   

8.
This letter demonstrates an evanescently coupled p-i-n photodiode combined with a multimode diluted waveguide using a simple all 2-in InP processing that includes on-wafer mirrors etching and antireflection coating. A high responsivity of 0.81 A/W at 1.55 /spl mu/m with less than 0.4-dB polarization dependence and a large -1-dB vertical alignment tolerance of 2.70 /spl mu/m were achieved simultaneously with a bandwidth of 47 GHz. Stable operation for over 1000 h was obtained under bias stress and temperature at 200/spl deg/C.  相似文献   

9.
Zinc oxide (ZnO) thin-film ridge waveguides have been designed and fabricated on n-type (100) silicon substrate. A filtered cathodic vacuum arc technique is used to deposit high-crystal-quality ZnO thin films on lattice-mismatched silicon substrates at 230/spl deg/C. A ridge waveguide of width /spl sim/2 /spl mu/m and height /spl sim/0.1 /spl mu/m is defined on the ZnO thin film by plasma etching. Room-temperature amplified spontaneous emission is observed with peak wavelength at /spl sim/385 nm under 355-nm optical excitation. It is found that the net optical gain of the ZnO thin-film ridge waveguides can be as large as 120 cm/sup -1/ at a pump intensity of /spl sim/1.9 MW/cm/sup 2/.  相似文献   

10.
We report the realization of a low cost 1.55-/spl mu/m spot size converted (SSC) laser using conventional SCH-MQW active layers. The laser consists of a rectangular gain section, a linear taper and a passive waveguide. The lateral taper and the passive waveguide are fabricated on the same lower SCH layer, using conventional photolithography and RIE (reactive ion etching). The device exhibits low beam divergence of 6.6/spl deg//spl times/10.9/spl deg/ and -2.2-dB coupling loss with a cleaved single-mode fiber. The 1-dB alignment tolerance is /spl plusmn/2.15 /spl mu/m in vertical direction and /spl plusmn/2.3 /spl mu/m in lateral direction, respectively.  相似文献   

11.
This paper presents the analysis and characterization of partially depleted absorber (PDA) photodiodes. Coupling to these photodiodes is achieved through a planar short multimode waveguide (PSMW) structure. Electric transport in the PDA structure has been investigated and an equivalent electric circuit was developed. Measurements on 5/spl times/20 /spl mu/m/sup 2/ PSMW PDA photodiodes have shown 0.80 A/W responsivity with a fiber mode diameter as high as 6 /spl mu/m. The transverse electric/transverse magnetic polarization dependence was <0.5/spl plusmn/0.3 dB with -1-dB input coupling tolerances as high as /spl plusmn/2.0 and /spl plusmn/1.3 /spl mu/m for horizontal and vertical directions. The -3-dB bandwidth was 50 GHz, and the -1-dB compression current at 40 GHz was 17 mA corresponding to +4.5 dBm radio frequency (RF) power. Compared to similar evanescently coupled p-i-n photodiodes, the saturation current has been significantly improved while maintaining comparable bandwidth and high responsivity.  相似文献   

12.
Antiresonant reflecting optical waveguide (ARROW) techniques are employed in vertical cavity surface emitting lasers (VCSELs) to achieve high-power single-mode emission. Using the effective-index method and fiber mode approximation, the cold-cavity lateral modal behavior for the circular shaped ARROW VCSEL demonstrates significant reduction of radiation loss from that of a single antiguide, while maintaining strong discrimination against high-order modes. The circular-waveguide is created by selective chemical etching and two-step metal-organic chemical vapor deposition growth, with proton implantation used to confine the current injection to the low-index core region. A single-mode CW power of 7.1 mW has been achieved from an 8 /spl mu/m diameter ARROW device (index step /spl Delta/n = 0.05, emission at /spl lambda//sub 0/ = 980 nm) with a far-field FWHM of 10/spl deg/. Larger aperture (12 /spl mu/m) devices exhibit multimode operation at lower drive currents with a maximum single-mode continuous-wave output power of 4.3 mW.  相似文献   

13.
Mid-infrared GaAs based bound-to-continuum quantum cascade microlasers with ridge waveguide geometry are fabricated by the monolithic integration of deeply etched semiconductor-air Bragg mirrors. Devices with ultra-short cavities of 50 and 150 /spl mu/m can be operated near room temperature (260 K) or at room temperature (300 K), respectively. 50 /spl mu/m-long devices show singlemode emission up to relatively high drive currents due to the large mode spacing of about 30 cm/sup -1/ (340 nm).  相似文献   

14.
Coupled vertical cavity surface-emitting laser (VCSEL) arrays are an attractive means to increase the coherent output power of VCSELs. Single-mode VCSELs, with output powers greater than 10 mW, would be useful as telecommunication transmitters /spl lambda/=1.3-1.55 /spl mu/m) or sources for optical interconnects. Commercially available single-mode VCSELs, even at shorter wavelengths /spl lambda/=0.85 /spl mu/m), are generally limited to a few milliwatts of output power. The conventional VCSEL structure incorporates a built-in positive-index waveguide, designed to support a single fundamental mode. Promising results in the 3-5 mW range (/spl lambda/=0.85 /spl mu/m) have been obtained from wet-oxidized, positive-index-guided VCSELs with small emission apertures (less than 3.5 /spl mu/m-dia). The small aperture size leads to a high electrical resistance and high current density, which can impact device reliability. By contrast, antiguided VCSEL structures have shown promise for achieving larger aperture single-mode operation. To obtain high single-mode powers with a larger emitting aperture, the use of a negative-index guide (antiguide) is beneficial. This paper discusses antiguided structures and some of their advantages when incorporated in 2-D VCSEL array structures.  相似文献   

15.
A planar waveguide based on an amorphous silicon-amorphous silicon carbide heterostructure is proposed for the realization of passive and active optical components at the wavelengths /spl lambda/=1.3-1.5 /spl mu/m. The waveguide has been realized by low temperature plasma enhanced chemical vapor deposition and is compatible with the standard microelectronic technologies. Thermo-optical induced modulation at /spl lambda/=1.5 /spl mu/m is demonstrated in this waveguide. Numerical simulations predict that operation frequencies of about 3 MHz are possible. The measurements have also allowed the determination of the previously unknown thermo-optical coefficient of undoped amorphous silicon at this wavelength.  相似文献   

16.
We have developed a new fabrication method of single-mode self-written waveguide by controlling the propagation mode in an optical fiber. This method is very appropriate for repeatable fabrication of the single-mode self-written waveguide. Since a Gaussian-like near-field pattern is required for the fabrication of a tiny and uniform waveguide core, the propagation mode in a conventional optical communication fiber was controlled by coupling with an optical fiber having 3-/spl mu/m core, which shows a single-mode operation at visible wavelength region. Single-mode propagation at optical communication wavelength was confirmed for the fabricated self-written waveguide. The evaluated core diameter of the self-written waveguide was /spl sim/9.5 /spl mu/m.  相似文献   

17.
We propose the hybrid integration of an air hole photonic crystal (PhC) structure with a high /spl Delta/ (0.75%) single-mode silica waveguide to achieve an ultracompact high efficiency 90/spl deg/ bend for transverse-magnetic polarized light. Diffraction from the periodic boundary between the PhC and silica waveguide regions is shown to seriously degrade the optical efficiency of the bend. A microgenetic algorithm (/spl mu/GA) combined with a two-dimensional finite-difference time-domain method is used to modify the PhC and its boundary layer to suppress this diffraction which in turn maximizes bend efficiency. The final optimized structure has a 99.4% bend efficiency at a wavelength of 1.55 /spl mu/m and occupies an area of only 27 /spl times/ 27 /spl mu/m.  相似文献   

18.
The reflective self-organized lightwave network (R-SOLNET) enables the formation of self-aligned waveguides in the photorefractive (PR) material between misaligned optical devices by introducing a write beam. The incident write beam from one device and the reflected write beam from the second device induce self-focusing in the PR material and construct a coupling waveguide. A wavelength filter on the waveguide edge is used to facilitate the reflected beam. The beam propagation method reveals that R-SOLNET exhibits higher coupling efficiencies and better tolerances than the one-beam-writing SOLNET and the free-space coupling. The apparent usefulness of R-SOLNET is remarkable for gaps wider than 100 /spl mu/m in 8-/spl mu/m-wide waveguide circuits. For 240-/spl mu/m gap, coupling efficiency better than 50% can be achieved even when the lateral misalignment is as large as 4 /spl mu/m. The results indicate that R-SOLNET may be useful for vertical waveguide constructions of optical z-connections in three-dimensional intrachip optical interconnects and switching systems, as well as for self-aligned optical couplings with devices that cannot emit write beams such as vertical-cavity surface-emitting lasers, photodetectors, and electrooptic switches.  相似文献   

19.
High-efficiency electroabsorption waveguide modulators have been designed and fabricated using strain-compensated InAsP-GaInP multiple quantum wells at 1.32-/spl mu/m wavelength. A typical 200-/spl mu/m-long modulator exhibits a fiber-to-fiber optical insertion loss of 9 dB and an optical saturation intensity larger than 10 mW. The 3-dB electrical bandwidth is in excess of 20 GHz with a 50-/spl Omega/ load termination. When used in an analog microwave fiber-optic link without amplification, a RF link efficiency as high as -38 dB is achieved at 10 mW input optical carrier power. These analog link characteristics are the first reported using MQW electroabsorption waveguide modulators at 1.32 /spl mu/m.  相似文献   

20.
We demonstrate a two-step lateral tapered 1.55-/spl mu/m spot-size converter distributed feedback laser diode (SSC DFB LD) having slope efficiencies as high as 0.457 and 0.319 mW/mA measured at 25 /spl deg/C and 85 /spl deg/C, respectively. The SSC DFB LD fabricated by using a nonselective grating process has a double core waveguide structure including a planar buried heterostructure type active waveguide and a ridge type passive waveguide. The fabricated SSC DFB LD operates at 1.553-/spl mu/m wavelength and shows a far-field pattern in horizontal and vertical directions of 7.3/spl deg/ and 11.6/spl deg/, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号