首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ergonomics》2012,55(2):325-332
A culinary spatula (turning shovel) is one of the common cooking tools used in the Oriental kitchen. Since the use of a turning shovel may cause cumulative trauma to the wrist, the spatula angle for food frying, food turning, and food shovelling was investigated. The subjects were eight female students who were experienced cooks. Handle angle significantly affected both performance and subjective rating. The optimum angle is 25°.  相似文献   

2.
Wang MJ  Chung HC  Chen HC 《Human factors》2000,42(4):553-565
In manual material handling tasks, the handle serves as the interface between the human operator and the box (the materials). Handle angle design can affect both wrist posture and lifting ability. This study was designed to evaluate the effect of handle angle on maximal acceptable weight of lifting (MAWL), perceived whole-body exertion, whole-body workload, wrist posture, and perceived wrist exertion. The results indicate that handle angle had a significant effect on wrist posture and wrist rating of perceived exertion (RPE). A box with a 0 degrees handle angle induced the greatest ulnar deviation and the highest wrist RPE. A 75 degrees handle angle induced the greatest radial deviation and a relatively high wrist RPE. A 30 degrees handle angle resulted in the greatest MAWL and the lowest level of wrist RPE. Overall, these findings suggest that 30 degrees and 45 degrees handle angles can provide favorable coupling conditions for the cutout-type handhold container handle. Actual or practical applications include the ergonomic design of container handles for manual material handling tasks industry.  相似文献   

3.
Maximum acceptable weights for asymmetric lifting of Chinese females   总被引:2,自引:0,他引:2  
Wu SP 《Applied ergonomics》2003,34(3):215-224
This study used the psychophysical approach to evaluate the effects of asymmetric lifting on the maximum acceptable weight of lift (MAWL) and the resulting heart rate, oxygen uptake and rating of perceived exertion (RPE). A randomized complete block factorial design was employed. Twelve female college students lifted weights at three different lifting frequencies (one-time maximum, 1 and 4 lifts/min) in the sagittal plane and at three different asymmetric angles (30 degrees, 60 degrees, and 90 degrees ) from the floor to a 68-cm height pallet. This lifting experiment was conducted for a 1-h work period using a free-style lifting technique. The MAWLs for asymmetric lifting were significantly lower than those for symmetric lifting in the sagittal plane. The MAWL decreased with the increase in the angle of asymmetry. However, the heart rate, oxygen uptake and RPE remained unchanged. Though the MAWL decreased significantly with lifting frequency, both the physiological costs (heart rate and oxygen uptake) and rating of perceived exertion increased with the increase in lift frequency. The most stressed body part was the arm. Lifting frequency had no significant effect on the percentage decrease in MAWL from the sagittal plane values. On average, decreases of 5%, 9% and 14% for MAWL at 30 degrees, 60 degrees and 90 degrees asymmetric lifting, respectively, were revealed. This result was in agreement with the findings of Chinese males studied by Wu [Int. J. Ind. Ergonom. 25 (2000) 675]. The percentage decrease in MAWL with twisting angle for the Chinese participants was somewhat lower than those for Occidental participants. In addition, even though there was an increase in heart rate and RPE with the increase in the symmetrical lift angle for Occidental participants, it was different from the Chinese participants. Lastly, the 1991 NIOSH equation asymmetry multiplier is more conservative in comparison with the results of the present study.  相似文献   

4.
The psychophysical method was used to determine the maximal acceptable load that eight males (age 22-30 years) would lift in each of four different positions: (1) seated, two-handed, symmetrical lift from a table, to a position 38 cm forward of the edge, (2) a seated lift from a position at the subject's side, on to a table in front of the subject involving a 90 degree twist of the torso, (3) standing, two-handed, symmetrical lift from the table, to a position 38 cm forward of the edge, and (4) standing, vertical lift from 86 above the floor. Subsequent to a training period, subjects lifted a tray with slotted handles at the rate of 1 or 4 lifts/min. Each subject chose the weight of the tray which was acceptable to him by adding or removing flat pieces of lead over a 45 min period. The weight of the tray, heart rate, and the perceived exertion were measured at 15, 30 and 45 min. Oxygen consumption was measured during the last 5 min of the 45 min experiment. Statistical analysis revealed a significant frequency and position effect. An increase in frequency from 1 to 4 lifts/min resulted in a decrease of 1.6 to 2.1 kg in the maximum acceptable weight for the various tasks. On average, the maximum acceptable weight of lift for standing positions was 16% greater than for sitting positions. Oxygen consumption and heart rate were significantly higher for 4 lifts/min than for 1 lift/min; however, the rating of perceived exertion did not differ for any factor.  相似文献   

5.
A laboratory study was conducted to determine the effects of pulling speed, handle height and angle of pull from the horizontal plane on one-handed dynamic pulling strength. The dynamic strength of nineteen male subjects for a 1 m pull was measured at four different handle heights (40%, 50%, 60% and 70% of shoulder height), at three different angles above the horizontal plane (15°, 25° and 35°), and at three different speeds of pulling (mean speed = 0.7, 1 and 1.1 ms−1). In addition, ratings of perceived exertion were recorded for elbow, shoulder and back. Also, the subjects were required to rate the overall comfort for the pull.

Pulling speed, handle height and angle all had a significant effect on both mean and peak dynamic pulling strengths (p 0.01). Among the three variables, pulling speed was found to be the most critical. The mean dynamic strength was 360, 250 and 180 N and the peak strength was 600, 425 and 320 N at 0.7, 1 and 1.1 ms−1, respectively. The strengths decreased with an increase in handle height from 100% at 40% shoulder height to 83% at 70% of shoulder height and were the highest at an angle of 25° from the horizontal plane.

The ratings of perceived exertion for all three body parts decreased with an increase in speed of pulling (p 0.01). The high speed pulls were perceived as being more comfortable than low speed pulls (p 0.01). The handles at 50% and 60% of shoulder height and at an angle of 25° were perceived as being more comfortable than those at other heights and angles (p 0.01).

It is suggested that biomechanical stresses need to be considered along with physical strength and ratings of perceived exertion and comfort to determine optimum speed, height and angle of pulling for high speed pulling tasks.  相似文献   


6.
《Ergonomics》2012,55(2):188-206
This study used a computer-controlled electric right angle nutrunner to investigate the relative effects of different power hand tool and process parameters on operator muscular exertions, handle stability and subjective ratings of perceived exertion. Target torque (25, 40 and 55 Nm), torque build-up time (35, 150, 300, 500 and 900 ms), and workstation orientation (horizontal and vertical) were studied. Dependent variables included EMG activity of the finger flexors, biceps, and triceps, handle velocity and displacement, work done on the tool-hand system and power involved in doing work, subjective ratings of perceived exertion, and task acceptance. Six inexperienced subjects (three females and three males) participated. Ten replications were performed for each combination of experimental conditions. The consequences of increasing the torque reaction force were greater handle instability and perceived exertion. The effect of torque buildup time on handle kinematics, muscular activity and perceived exertion was not monotonic. Among five build-up times tested, the hand was most unstable (greater peak handle velocity and power against the operator) for a 150 ms buildup time. Greater peak handle displacement, total work against the operator and average EMG were observed for 150 and 300 ms build-up times than for other build-up time conditions. Integrated EMG and EMG latency significantly increased as build-up time increased. Average EMG latency between the onset of EMG burst and the onset of torque build-up was 40 ms for a 35 ms build-up time and 330 ms for a 900 ms build-up time. Subjective ratings of perceived exertion were the least when torque build-up time was 35 ms, however greater peak torque variance was associated with this condition.  相似文献   

7.
Home support workers (HSWs) work in clients' homes assisting with rehabilitation and activities of daily living. Like all health-care professionals, HSWs are at an increased risk for developing back injuries. Lift devices have been shown to reduce injuries to the worker. Presently, there are few lifting devices for home use that cost under $4000 CDN. Our study involved designing a safe and affordable lift device (retail cost under $2000 CDN) to be used by HSWs in the home and evaluating it in a typical bathroom. Thirty-eight HSWs and three seniors evaluated the BCIT lift, a commercially available lift (BHM Medical Inc.) and the manual method of transfer and lift. Results indicated that the BCIT lift was an improvement over the manual method of transferring, and approximated the more expensive, automatic lift in terms of perceived exertion, ease of use and safety. Feedback provided to the researchers has been incorporated into a new, ergonomically sound and marketable lift device.  相似文献   

8.
A laboratory experiment was conducted to determine the effects of asymmetric lifting on psychophysically determined maximum acceptable weight of lift (MAWL) and the resulting heart rate, oxygen uptake and rating of perceived exertion. Thirteen male college students were recruited as participants. Each participant performed 12 different lifting tasks involving three lifting frequencies (one-time maximum, 1 and 4 lifts/min) and four twisting angles (including the sagittal plane and three different angles of asymmetry, i.e., 0, 30, 60, and 90°) from the floor to a 76 cm high pallet for one hour's work shift using a free-style lifting technique. The results showed that: (1) The MAWLs were significantly lower for asymmetric lifting than for symmetric lifting in the sagittal plane. The MAWL decreased with an increase in the angle of asymmetry, however, the heart rate, oxygen uptake and RPE remained unchanged; (2) Lifting frequency had no significant effect on the percentage decrease in MAWL from the sagittal plane values. Correction factors of 4, 9, and 13% for MAWL at 0, 30, 60, and 90°of asymmetric lifting, respectively, are recommended; (3) Both the physiological costs (heart rate and oxygen uptake) and rating of perceived exertion increased with an increase in lifting frequency though maximum acceptable weight of lift decreased. The most stressed body parts were the lower back and the arm; and (4) The percentage decrease in MAWL with twisting angle for the Chinese participants was somewhat lower than those of the Occidental participants. In addition, even though there was a decrease in MAWL, heart rate and RPE increased with an increase in the angle of a symmetric lifting for the Occidental participants, it was different from that of the Chinese participants.

Relevance to industry

It is generally believed that asymmetric lifting involving torso twisting is more harmful to back spine than symmetric lifting. However, the previous studies were conducted in Europe and North America, and the data were obtained from the Caucasian populations. This work, therefore, aims to investigate the influence of asymmetric lifting on the lifting capacity of the Chinese participants, and to compare the differences with the Occidental populations.  相似文献   


9.
Sickle operation in harvesting has been analysed with reference to design features of nine different types of sickles, and field and laboratory based investigations on biomechanical stresses and physiological valuation on six farmers. It has been indicated that the blade geometry contributes significantly to human performance and there is ample scope for further design optimisation. The suggested modifications are: (i) sickle weight - 200 g; (ii) total length of sickle - 33 cm; (iii) handle length - 11 cm; (iv) handle diameter - 3 c cm; (v) radius of blade curvature - 15 cm; (vi) blade concavity - 5 cm; (vii) serrated sickle: tooth pitch - 0.20 cm and tooth angle - 60 degrees; (viii) ratio of the length of cutting surface to chord length - 1.20.  相似文献   

10.
The hoeing operation is extensively required in farm tasks, such as seed-bed preparations, cutting root crops, etc. In seven male farmers (age: 27.4 ± 5.9 years), using two types of hoes (A&B), the physiological and biomechanical strains were evaluated, and hoeing speeds in low lift (LL) and high lift (HL) work were optimized. The heart rates (161–176 beats/min) and VO2 demands (71–89% VO2max) indicated extremely heavy work loads. Hoe A (blade-handle angle: 65°) was less strenuous in LL, while Hoe B (blade-handle angle: 87°) was better in HL work. During the hoeing sequence, the torque and compressive forces at the L5-S1 disc increased with the trunk inclination, up to about 65°; beyond 55° inclination, the torque at the L5-S1 disc exceeded the upper limit (135 Nm) allowed for a day's work. The work output was optimized equating at 50% VO2max, i.e, stroke rate: 53 and 21 strokes/min; weight of soil dug: 123 and 54 kg/min, and area of soil dug: 1.34 and 0.33 sq.m./min in LL and HL work respectively. In general, farmers are suggested to adopt the LL mode of hoeing; with a 10 min work to 7 min rest ratio, the 8 h work output was derived as 400 to 450 sq.m. A hoe, weighing about 2 kg, having blade-handle angle 65 to 70°, blade length 25 to 30 cm, blade width 22 to 24 cm, handle length 70 to 75 cm, and the handle diameter 3 to 4 cm may be suitable for different modes of hoeing.  相似文献   

11.
This article presents the ergonomic interventions in a semiconductor manufacturing company, with a focus on evaluating the effect of pod (wafer container) type and carrying distance on participants' maximal acceptable weight of lift (MAWL), heart rate (HR), wrist posture, and perceived exertion rating. Sixteen field operators participated in this study. The results indicate using the new pod with power grip handles produced greater MAWL than the old pod with pinch grip handles. On the other hand, the new pod also induced greater radial deviations than the old type. Recommendation for improving pod handle design is provided. Further, the increased carrying distance caused a decrease in MAWL and an increase in HR. Thus, using cart for intrabay pod transfer and minimizing manual carrying is also recommended. © 2002 Wiley Periodicals, Inc.  相似文献   

12.
The rear-facing Infant Car Seat (ICS) is designed to meet federal requirements for transporting children less than 1 year old. Typical use includes transfer in and out of a vehicle, which is shown to be a difficult lift. Despite the frequency of this lift, manufacturers provide little guidance for users. Review of relevant literature suggested an ICS featuring an angled handle, promoting a neutral wrist posture, would increase grip stability and decrease lifting effort. Popular press suggested a foot-in-car stance for the ICS lift would do the same. An experiment was conducted in which wrist deviations from neutral posture were recorded along with lifting muscle activation levels (multiple flexor muscles and biceps brachii) and overall perceived exertion for straight versus a new bent handle design and conventional stance versus foot-in-car. Foot position was examined to test the recommendations in the popular press. Surprisingly, wrist deviation was not significantly affected by the new bent handle design (due to compensatory behavior with the straight handle) but was related to foot placement (p=0.04). Results revealed the bent handle to significantly reduce flexor activation compared with the straight handle (p=0.0003); however, the level of biceps activation increased. Biceps activation also significantly increased for foot-in-car stance (p=0.035) but not flexor activation. In general, the bent handle enabled the user to lift the ICS with a steadier grip and less effort.  相似文献   

13.
The aim of this study was to assess the effect of an elastic lumbar back support on spinal loading and trunk, hip and knee kinematics while allowing subjects to move their feet during lifting exertions. Predicted spinal forces and moments about the L5/S1 intervertebral disc from a three-dimensional EMG-assisted biomechanical model, trunk position, velocities and accelerations, and hip and knee angles were evaluated as a function of wearing an elastic lumbar back support, while lifting two different box weights (13.6 and 22.7 kg) from two different heights (knee and 10 cm above knee height), and from two different asymmetries at the start of the lift (sagittally symmetric and 60 degrees asymmetry). Subjects were allowed to lift using any lifting style they preferred, and were allowed to move their feet during the lifting exertion. Wearing a lumbar back support resulted in no significant differences for any measure of spinal loading as compared with the no-back support condition. However, wearing a lumbar back support resulted in a modest but significant decrease in the maximum sagittal flexion angle (36.5 to 32.7 degrees), as well as reduction in the sagittal trunk extension velocity (47.2 to 40.2 degrees s(-1)). Thus, the use of the elastic lumbar back support provided no protective effect regarding spinal loading when individuals were allowed to move their feet during a lifting exertion.  相似文献   

14.
《Ergonomics》2012,55(10):1276-1286
The effect of different handle angles on work distribution during hand cycling was determined. Able-bodied subjects performed hand cycling at 20% of maximum power level (mean (SD) power level: 90.0 (25.8) W) at a cadence of 70 rpm using handle angles of ±30°, ±15° and 0°. The handle angle had a significant effect on work during the pull down (p < 0.001) and lift up (p = 0.005) sector, whereby the highest work was performed with handle angles of +30° and ?15° respectively. The cycle sector had a significant effect on work (p < 0.001) and significantly (p = 0.002) higher work was performed in the pull down sector (25% higher than mean work over one cycle) as compared to the lift up sector (30% lower than mean work over one cycle). Therefore, a fixed handle angle of +30° is suggested to be optimal for power generation. The results of this study help to optimise the handbike–user interface. A more pronated handle angle compared to the one conventionally used was found to improve the performance of hand cycling and thereby the mobility of disabled people.  相似文献   

15.
《Ergonomics》2012,55(2):143-159
The objective of this study was to identify the perceived exertion mechanisms (direct muscle force and whole body exertion) associated with the decision to change the weight of lift during the determination of the maximum acceptable weight of lift (MAWL). Fifteen males lifted a box of unknown weight at a rate of 4.3 lifts/min, and adjusted the weight until their MAWL was reached. Variables such as the predicted muscle forces and heart rate were measured during the lifting exertion, as well as the predicted spinal loading in three dimensions using an EMG-assisted biomechanical model. Multiple logistic regression techniques were used to identify variables that were associated with the decision to change the weights up and down prior to a subsequent lift. Results indicated that the force in the left erector spinae, right internal oblique, and left latissimus dorsi muscles as well as heart rate were associated with decreases in the weight prior to the next lift. It appears that a combination of local factors (muscle force) and whole body exertion factors (heart rate) provide the feedback for the perceived exertion when decreasing the weight. The up-change model indicated that the forces of the right erector spinae, left internal oblique, and the right latissimus dorsi muscles were associated with the decision to increase the weight prior to the next lift. Thus, local factors provide feedback during the decision to increase the weight when starting from light weights. Collectively, these findings indicate that psychophysically determined weight limits may be more sensitive to muscular strain rather than spinal loading.  相似文献   

16.
The objective of this study was to identify the perceived exertion mechanisms (direct muscle force and whole body exertion) associated with the decision to change the weight of lift during the determination of the maximum acceptable weight of lift (MAWL). Fifteen males lifted a box of unknown weight at a rate of 4.3 lifts/min, and adjusted the weight until their MAWL was reached. Variables such as the predicted muscle forces and heart rate were measured during the lifting exertion, as well as the predicted spinal loading in three dimensions using an EMG-assisted biomechanical model. Multiple logistic regression techniques were used to identify variables that were associated with the decision to change the weights up and down prior to a subsequent lift. Results indicated that the force in the left erector spinae, right internal oblique, and left latissimus dorsi muscles as well as heart rate were associated with decreases in the weight prior to the next lift. It appears that a combination of local factors (muscle force) and whole body exertion factors (heart rate) provide the feedback for the perceived exertion when decreasing the weight. The up-change model indicated that the forces of the right erector spinae, left internal oblique, and the right latissimus dorsi muscles were associated with the decision to increase the weight prior to the next lift. Thus, local factors provide feedback during the decision to increase the weight when starting from light weights. Collectively, these findings indicate that psychophysically determined weight limits may be more sensitive to muscular strain rather than spinal loading.  相似文献   

17.
《Ergonomics》2012,55(9):839-853
Abstract

A laboratory study was conducted to determine the maximum frequencies acceptable to female workers for one-handed lifts in the horizontal plane. A psychophysical method was used to determine maximum acceptable frequency for an 8-hour workday. Ten female college students were required to lift continuously three different loads to two different reach distances (38 and 63 cm) on a 91 cm high work table. The lifting task was paced by a repeating timer which the subject controlled according to her subjective feelings of fatigue. Heart rate and RPE were measured during the last 5min of the experiment to determine the physiological level of functioning and perceived exertion. Psychophysically determined maximum acceptable frequencies were compared with the standards based on methods-time measurement (MTM) analysis.

Statistical analysis showed that both the weight of the load and reach distance had a significant effect on maximum frequency acceptable to the subjects. No single value for percentage of maximum frequency can be used to establish permissible one-handed lift limits in women; rather, this value depends upon the weight of the object and distance of lift. The average maximum acceptable frequency was 51% of the maximum frequency that the subjects could maintain for a period of 4min. The subjects selected workloads which resulted in a mean heart rate of 101 beats/min. The subjects rated the perceived exertion ranging from ‘fairly light’ to ‘somewhat hard’. Performance based on MTM analysis ranged from 11% below to 32% above the maximum workload acceptable to the subjects. The non-significant heart rate differences found among the six load-distance combinations lend strong support for the use of psychophysical methodology in future studies of fatigue criteria. The study also supports the previous findings that separate physiological fatigue criteria are needed for tasks involving arm work and whole body exertion.  相似文献   

18.
A laboratory study was conducted to evaluate ten different lawn mowers for ease of starting, operating controls and handling. Ninety-nine paid subjects (50 males and 49 females) from 14 to 71 years of age with prior experience on lawn mowers were selected randomly. Subjects were asked to identify the various controls, start a lawn mower four times, operate it for approximately 50 m and fill out lawn mower questionnaires on startability and controls. Subjective evaluations were supplemented with objective data.

All lawn mowers tested, except one equipped with a primer in place of a throttle, had high startability rates (90–97%). The handle suddenly pulled back in 0–5% cases. However, 70% of the lawn mowers were perceived as less than easy to start and controls were less than easy to operate on 90% of the lawn mowers. Subjects were less than comfortable in the starting position in 9 out of 10 lawn mowers with the rating of perceived exertion ranging from 10 to 12 on the Borg scale. Instructions on 7 out of 10 lawn mowers were rated as less than easy to follow. Ergonomic evaluation found major problems with the location, design, direction of movement and safety in operating various controls. About 95% of the subjects could not identify the safety control lever and the self-propel control on one lawn mower.

Based on ergonomic evaluation and subjective feedback, it is recommended that the starter rope handle should be placed in the middle at the back of the lawn mower at a height of about 70 cm from the floor. The distance of the starter rope handle from the handlebar should be 36 cm and it should be larger in size (about 11.8 cm) to accommodate all four fingers. Both the handlebar and the safety control lever should be semicircular in shape with a diameter ranging from 1.9 to 2.5 cm. The force required to hold the safety control lever should be less than 7 N. Knob-type sliding levers with clear labeling should be used for throttle, self-propel and ground speed controls. These controls should be located near the handlebar for clear visibility, access, reach and ease of operation.

Lastly, detailed studies are needed to determine optimum location of the starter rope handle, direction of pull, length of pull and speed of pulling. Ergonomic principles should not be ignored in the design and placement of controls on lawn mowers.  相似文献   


19.
Das B  Jongkol P  Ngui S 《Ergonomics》2005,48(1):78-97
Based on the ergonomics evaluation of existing non-powered hacksaws with original/horizontal and conventional/market handles, ergonomically designed hacksaw handles are proposed. To accommodate the entire male and female populations, the hand dimensions are categorized into three groups: small, medium and large. The proposed handles give special emphasis to hand size, length, cross-section dimension and curvature. The three-sized handles for both the preferred (rear) and non-preferred (front) hands are interchangeable to suit the individual hand size. Thus, the concept of 'snap-on-handles' with a fixed hacksaw (blade) can be promoted. The ergonomically designed hacksaw handles were tested/compared with original/horizontal and conventional/market hacksaw handles, in terms of performance or productivity (depth of cut), muscular effort or strain (EMG) and subjective scores (acceptance/comfort). The experimental results conclusively proved that the ergonomically designed hacksaw handles were significantly better than the other handles in terms of the stated criteria. The performance or productivity improvements of the ergonomically designed handles were about 25 and 148%, when compared with the conventional/market and original/horizontal handles, respectively. Furthermore, when the ergonomically designed handle was not matched with the proper or appropriate hand size, there was a significant reduction in performance or productivity, increase in muscular effort and decrease in subjective scores of acceptance/comfort.  相似文献   

20.
Although the development of the National Institute for Occupational Safety and Health (NIOSH) equation was partly based on the expertise of committee members convened under the auspices of NIOSH, to our knowledge, there is no study reported in the published literature that examined the role of professional expertise in determining the relative contribution of different lifting task variables to effort exertion. In this study, we explored whether professional expertise can be relied on, through the use of a systematic procedure, to quantify the effects of lifting task parameters on perceived effort and risk of injury outcome measures. Three international experts participated in the research reported herein and evaluated the interactive effects of 6 lifting variables: (a) weight of load, (b) horizontal distance, (c) frequency of handling, (d) work duration, (e) twisting angle, and (f) height of lift. They predicted the lifting effort and the injury risk of a large number of lifting configurations. A linguistic approach was used to describe the lifting activities. Logistic regression analyses were employed to model effort as a function of various lifting task variables. The results showed that all 3 experts rated the weight of load as the most dominant variable and the height of lift as the least important variable. Furthermore, they differed slightly in ranking the relative importance of other variables. In general, the effect of weight of load on physical effort was, at a minimum, 2 times more important than other lifting task variables. The horizontal distance, work duration, frequency, and twisting angle variables were considered to be more important than the height of lift by 25% to 33%. Collectively, these findings indicate that the experts agreed on the most and least important variables. In between, the relative importance of other variables was dependent on the professional training of the expert. The results further demonstrated that an increase in perceived physical effort was associated with an increase in the perceived risk of injury in the moderate‐ to high‐range values. There was a large variance, however, at the lower levels of physical effort and perceived risk. Collectively, the aforementioned findings confirm the notion that low‐level effort exertion activities are not perceived by the experts as risky. As the level of exertion increases to moderate values, however, the experts start to be conscious about the risks involved in the manual lifting activities. Therefore, one should not treat these 2 variables as equal, because they may reflect 2 separate dimensions in the low range. In the moderate to high range, they have some common variance but they may still reflect some differences to a certain extent. © 2002 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号