首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the purification, molecular cloning, and characterization of a 40-kDa glycerophosphodiester phosphodiesterase homolog from Borrelia hermsii. The 40-kDa protein was solubilized from whole organisms with 0.1% Triton X-100, phase partitioned into the Triton X-114 detergent phase, and purified by fast-performance liquid chromatography (FPLC). The gene encoding the 40-kDa protein was cloned from a B. hermsii chromosomal DNA lambda EXlox expression library and identified by using affinity antibodies generated against the purified native protein. The deduced amino acid sequence included a 20-amino-acid signal peptide encoding a putative leader peptidase II cleavage site, indicating that the 40-kDa protein was a lipoprotein. Based on significant homology (31 to 52% identity) of the 40-kDa protein to glycerophosphodiester phosphodiesterases of Escherichia coli (GlpQ), Bacillus subtilis (GlpQ), and Haemophilus influenzae (Hpd; protein D), we have designated this B. hermsii 40-kDa lipoprotein a glycerophosphodiester phosphodiesterase (Gpd) homolog, the first B. hermsii lipoprotein to have a putative functional assignment. A nonlipidated form of the Gpd homolog was overproduced as a fusion protein in E. coli BL21(DE3)(pLysE) and was used to immunize rabbits to generate specific antiserum. Immunoblot analysis with anti-Gpd serum recognized recombinant H. influenzae protein D, and conversely, antiserum to H. influenzae protein D recognized recombinant B. hermsii Gpd (rGpd), indicating antigenic conservation between these proteins. Antiserum to rGpd also identified native Gpd as a constituent of purified outer membrane vesicles prepared from B. hermsii. Screening of other pathogenic spirochetes with anti-rGpd serum revealed the presence of antigenically related proteins in Borrelia burgdorferi, Treponema pallidum, and Leptospira kirschneri. Further sequence analysis both upstream and downstream of the Gpd homolog showed additional homologs of glycerol metabolism, including a glycerol-3-phosphate transporter (GlpT), a glycerol-3-phosphate dehydrogenase (GlpD), and a thioredoxin reductase (TrxB).  相似文献   

2.
Klebsiella pneumoniae OmpA, the 40-kDa major protein of the outer membrane, was cloned and expressed in Escherichia coli. The recombinant protein was produced intracellularly in E. coli as inclusion bodies. Fusion of a short peptide to the N-terminus of native P40 facilitated high-level expression of the recombinant protein. Purified recombinant P40 was analyzed to verify purity and structural integrity. The molecular mass of purified recombinant P40 determined by electrospray mass spectrometry was 37,061 Da, in agreement with the theoretical mass deduced from the DNA sequence. Specific proliferation of recombinant-P40-primed murine lymph node cells in response to recombinant P40 stimulation in vitro indicated the presence of a T-cell epitope on recombinant P40. The induction of high serum antibody titers to a synthetic peptide derived from the attachment protein G of the respiratory syncytial virus when chemically coupled to recombinant P40 indicated that the protein had potent carrier properties.  相似文献   

3.
4.
In this study we report the purification and characterization of a 66-kDa protein, designated Oms66, for outer membrane-spanning 66-kDa protein, that functions as a porin in the outer membrane (OM) of Borrelia burgdorferi. Oms66 was purified by fast-performance liquid chromatography and exhibited an average single-channel conductance of 9.62 +/- 0.37 nS in 1 M KCl, as evidenced by 581 individual insertional events in planar lipid bilayers. Electrophysiological characterization indicated that Oms66 was virtually nonselective between cations and anions and exhibited voltage-dependent closure with multiple substates. The amino acid sequence of tryptic peptides derived from purified Oms66 was identical to the deduced amino acid sequence of p66, a previously described surface-exposed protein of B. burgdorferi. Purified Oms66 was recognized by antiserum specific for p66 and serum from rabbits immune to challenge with virulent B. burgdorferi, indicating that p66 and Oms66 were identical proteins and that Oms66/p66 is an immunogenic protein in infected rabbits. In a methodology that reduces liposomal trapping and nonspecific interactions, native Oms66 was incorporated into liposomes, confirming that Oms66 is an outer membrane-spanning protein. Proteoliposomes containing Oms66 exhibited porin activity nearly identical to that of native, purified Oms66, indicating that reconstituted Oms66 retained native conformation. The use of proteoliposomes reconstituted with Oms66 and other Oms proteins provides an experimental system for determinating the relationship between conformation, protection, and biological function of these molecules.  相似文献   

5.
An iron-repressible 44-kDa outer membrane protein plays a crucial role in the acquisition of heme by the anaerobic bacterium Bacteroides fragilis. The DNA sequence of the gene encoding the 44-kDa protein (hupA) was determined. The hupA gene encodes a protein of 431 amino acid residues with a calculated molecular mass of 48,189 Da. The hupA gene is preceded by an open reading frame of 480 bp that probably encodes a protein with a calculated molecular mass of 18,073 Da. hupA and this open reading frame are likely organized in an operon, and a sequence homologous to the Escherichia coli consensus Fur box was present in the putative promoter region of the operon. Heme-binding studies showed that HupA binds heme. Analysis of the deduced amino acid sequence revealed signature heme-binding consensus motifs, characteristic of heme lyases. Subcellular localization studies in E. coli revealed that HupA was mainly found in the cytoplasmic membrane but not in the outer membrane of E. coli. This suggested that B. fragilis uses another strategy for the translocation of this outer membrane protein across its cell envelope than E. coli does. HupA did not have significant homology with other putative bacterial heme receptors.  相似文献   

6.
Here we report on the overexpression and in vitro characterization of a recombinant form of ExoM, a putative beta1-4 glucosyltransferase involved in the assembly of the octasaccharide repeating subunit of succinoglycan from Sinorhizobium meliloti. The open reading frame exoM was isolated by PCR and subcloned into the expression vector pET29b, allowing inducible expression under the control of the T7 promoter. Escherichia coli BL21(DE3)/pLysS containing exoM expressed a novel 38-kDa protein corresponding to ExoM in N-terminal fusion with the S-tag peptide. Cell fractionation studies showed that the protein is expressed in E. coli as a membrane-bound protein in agreement with the presence of a predicted C-terminal transmembrane region. E. coli membrane preparations containing ExoM were shown to be capable of transferring glucose from UDP-glucose to glycolipid extracts from an S. meliloti mutant strain which accumulates the ExoM substrate (Glcbeta1-4Glcbeta1-3Gal-pyrophosphate-polyprenol). Thin-layer chromatography of the glycosidic portion of the ExoM product showed that the oligosaccharide formed comigrates with an authentic standard. The oligosaccharide produced by the recombinant ExoM, but not the starting substrate, was sensitive to cleavage with a specific cellobiohydrolase, consistent with the formation of a beta1-4 glucosidic linkage. No evidence for the transfer of multiple glucose residues to the glycolipid substrate was observed. It was also found that ExoM does not transfer glucose to an acceptor substrate that has been hydrolyzed from the polyprenol anchor. Furthermore, neither glucose, cellobiose, nor the trisaccharide Glcbeta1-4Glcbeta1-3Glc inhibited the transferase activity, suggesting that some feature of the lipid anchor is necessary for activity.  相似文献   

7.
8.
9.
A 1.7-kilobase pair segment from the conjugative transfer region of plasmid R388 DNA was cloned and sequenced. It contained trwD, a gene essential for plasmid R388 conjugation, for expression of the conjugative W-pilus and for sensitivity to phage PRD1. The deduced amino acid sequence of TrwD showed homology to the PulE/VirB11 superfamily of potential ATPases involved in various types of transport processes. A fusion of trwD with the glutathione S-transferase (GST) was constructed, and the resulting fusion protein was purified from overproducing bacteria. Factor Xa hydrolysis of GST-TrwD and further purification rendered TrwD protein with more than 95% purity. Antibodies raised against TrwD localized it both in the soluble fraction and in the outer membrane of Escherichia coli. TrwD is probably a peripheral outer membrane protein because it could be solubilized by increasing salt concentration to 0.5 M NaCl in the lysis buffer. Both purified GST-TrwD and TrwD could hydrolize ATP. ATPase activity increased 2-fold in the presence of detergent-phospholipid mixed micelles. To study the importance of the nucleotide-binding site, Walker box A (GXXGXGK(T/S)), present in TrwD, the conserved lysine residue was replaced by glutamine. The mutant protein, expressed and purified under the same conditions as the wild type, did not exhibit ATPase activity. TrwD(K203Q) was not able to complement the mutation in trwD of the R388 mutant plasmid, suggesting the essentiality of the ATPase activity of the protein in the conjugative process. Furthermore, the dominant character of this mutation suggested that GST-TrwD(K432Q) was still able to interact either with itself or with other component(s) of the conjugative machinery.  相似文献   

10.
Mycoplasma arthritidis mitogen (MAM), is a soluble protein with classical superantigenic properties and is produced by an organism that causes an acute and chronic proliferative arthritis. Unfortunately, the process of obtaining purified MAM from M. arthritidis culture supernatants is extremely time-consuming and costly, and very little material is recovered. Thus, our laboratory has expressed MAM in Escherichia coli by using a protein fusion expression system. The construction and expression of recombinant MAM (rMAM), as well as a comparison of the biological properties of rMAM to those of native MAM, are discussed. Briefly, conversion of the three UGA codons to UGG codons was required to obtain full-length expression and mitogenic activity of rMAM. Antisera to native MAM recognized both rMAM and the fusion protein. The T-cell receptor Vbeta and major histocompatibility complex class II receptor usages by rMAM and the fusion protein were identical to that of native MAM. In addition, the ability to induce suppression and form the superantigen bridge could also be demonstrated with rMAM. Importantly, dose-response experiments indicated that homogeneous native MAM and rMAM were of equal potency. Thus, MAM has been successfully expressed in E. coli, thereby creating a viable alternative to native MAM.  相似文献   

11.
We previously reported the purification of a UDP-N-acetylhexosamine (UDP-HexNAc) pyrophosphorylase from pig liver that catalyzed the synthesis of both UDP-GlcNAc and UDP-GalNAc from UTP and the appropriate HexNAc-1-P (Szumilo, T., Zeng, Y., Pastuszak, I., Drake, R., Szumilo, H., and Elbein, A. D. (1996) J. Biol. Chem. 271, 13147-13154). Both sugar nucleotides were synthesized at nearly the same rate, although the Km for GalNAc-1-P was about 3 times higher than for GlcNAc-1-P. Based on native gels and SDS-polyacrylamide gel electrophoresis, the enzyme appeared to be a dimer of 120 kDa composed of two subunits of about 57 and 64 kDa. Three peptides sequenced from the 64-kDa protein and two from the 57-kDa protein showed 100% identity to AGX1, a 57-kDa protein of unknown function from human sperm. An isoform called AGX2 is identical in sequence to AGX1 except that it has a 17-amino acid insert near the carboxyl terminus. We expressed the AGX1 and AGX2 genes in Escherichia coli. The protein isolated from the AGX1 clone comigrated on SDS gels with the liver 57-kDa pyrophosphorylase subunit and was 2-3 times more active with GalNAc-1-P than with GlcNAc-1-P. On the other hand, the protein from the AGX2 clone migrated with the liver 64-kDa pyrophosphorylase subunit and had 8-fold better activity with GlcNAc-1-P than with GalNAc-1-P. These results indicate that insertion of the 17-amino acid peptide modifies the specificity of the pyrophosphorylase from synthesis of UDP-GalNAc to synthesis of UDP-GlcNAc.  相似文献   

12.
In eukaryotic cells a number of different proteins with important regulatory functions are reversibly methyl-esterified at carboxyl-terminal prenylcysteine residues. These proteins include the low molecular weight GTP-binding proteins, the gamma-subunit of the heterotrimeric G-proteins, and the nuclear lamins. The methylating enzymes that catalyze this type of carboxyl methylation reaction are integral membrane proteins, and the methylated protein products tend to be membrane-associated. Analyses of protein carboxyl methylation in a wide range of vertebrate tissues revealed a major carboxyl-methylated protein that was clearly distinct from those that are modified at prenylcysteine groups (Volker, C., Miller, R.A., McCleary, W.R., Rao, A., Poenie, M., Backer, J.M., and Stock, J.B. (1991) J. Biol. Chem. 266, 21515-21522). This M(r) = 36,000 protein is localized to the cytosol. Unlike the prenylcysteine methyltransferases, the enzyme that catalyzes the methylation of the 36-kDa protein is found in the cytosol. The 36-kDa methylated protein has been purified from bovine brain. Sequence analysis of several peptides clearly shows that the protein is the catalytic subunit of protein phosphatase 2A. A soluble 40-kDa methyltransferase that catalyzes the reaction has also been purified.  相似文献   

13.
Vertebrate ferredoxins are 12-14-kDa iron-sulfur proteins, some of which transfer electrons to mitochondrial cytochrome P450s. The function of many of these cytochrome P450s is to catalyze stereospecific hydroxylation of endogenous steroids. As part of our interest in the kidney mitochondrial 1 alpha-hydroxylation of 25-hydroxyvitamin D3, we have constructed an expression plasmid coding for a fusion protein containing the chick kidney ferredoxin. We subcloned chick kidney ferredoxin cDNA, obtained from our vitamin D-deficient chick kidney library by polymerase chain reaction (Brandt, M. E., Gabrik, A. H., and Vickery, L. E. (1991) Gene (Amst.) 97, 113-117) into Qiagen's pQE9, which contains an N-terminal 6xHis tag (peptide sequence for 6 adjacent histidines present in the recombinant proteins). The coding sequence was preceded by a factor Xa cleavage site. The resulting plasmid, pQTcFdx, was overexpressed in Escherichia coli, and the soluble fusion protein was purified from the cell lysate in one step by Ni(II)-nitrilotriacetic acid-agarose chromatography. We obtained 7-10 mg of greater than 99% homogeneous fusion protein from a 1-liter culture and 4-6 mg of mature ferredoxin cleaved by factor Xa. The fusion protein possessed an absorption spectrum and an electron paramagnetic resonance spectrum quantitatively indistinguishable from those published for ferredoxin purified from adrenal glands and placenta or expressed in E. coli with another vector. The fusion protein was active in supporting the 1 alpha-hydroxylation of 25-hydroxyvitamin D3 in a reconstitution assay of a solubilized, partially purified preparation of cytochrome P450 from vitamin D-deficient chick kidney. We conclude that the procedure described here is an efficient way to produce and purify vertebrate ferredoxin; the [2Fe-2S] cofactor is assembled in vivo and effectively incorporated into the fusion protein in E. coli; slight alterations at the N terminus do not alter incorporation of the [2Fe-2S] cofactor or the biological activity of ferredoxin, and post-translational modifications, such as phosphorylation, are not an absolute requirement for ferredoxin electron transporting activity. The recombinant ferredoxin can be used for physical studies and other structure-function studies.  相似文献   

14.
Immunoblots using bovine antibody against Haemophilus somnus as the primary antibody consistently identified 31-, 40- and 78-kDa proteins in Sarkosyl-insoluble extracts of H. somnus. A genomic library of H. somnus 8025 DNA was constructed in plasmid pUC19, and 45 recombinants expressed proteins which were recognized by bovine antiserum in Western blots (immunoblots). Ten of the recombinants expressing a 31-kDa protein caused the lysis of bovine erythrocytes. Restriction endonuclease mapping indicated that the hemolytic recombinants shared an approximately 1.7-kb BglII fragment. Southern blot analysis using the BglII fragment as a probe revealed homology among the recombinants and the presence of an identically sized BglII fragment in the chromosome of all H. somnus isolates tested. Sequence analysis indicated the presence of an 822-bp open reading frame within the 1.7-kb BglII fragment. Deletion of this open reading frame resulted in the loss of hemolytic activity and protein expression in recombinant Escherichia coli, suggesting the possible role of the 31-kDa protein as a hemolysin. An amino acid sequence deduced from the DNA sequence shared homology with outer membrane protein A of E. coli, Salmonella typhimurium, and Shigella dysenteriae, with P6 of Haemophilus influenzae, and with PIII of Neisseria gonorrhoeae. An amino acid analysis of the recombinant 31-kDa protein agreed with the amino acid composition deduced from the DNA sequence.  相似文献   

15.
An outer membrane PIA protein from Neisseria gonorrhoeae strain FA19 was expressed in Escherichia coli and refolded in vitro in the presence of zwitterionic detergent. Its proper folding and subunit organization was confirmed by comparison with the native counterpart. The unfolding of PIA has been investigated using fluorescence spectroscopy and analytical size-exclusion chromatography methods. Analysis of the denaturation pathway of the PIA revealed that it forms an unusually labile quaternary structure. In the presence of 1 M guanidinium chloride (GdmCl) or upon heating up to 50 degrees C, dissociation of the PIA oligomer was observed resulting in the formation of folded monomeric intermediates. Unfolding of monomers occurs at 80 degrees C or in the presence of 4.3 M GdmCl, indicating high intrinsic stability toward both GdmCl and elevated temperatures. Both oligomeric and monomeric forms of PIA exhibited affinity to the hydrophobic probe 1-anilinonaphthalene-8-sulfonic acid (ANS) and bind with Kd=80 and 130 microM, respectively. Denaturation of the PIA completely abolished affinity to ANS, suggesting that hydrophobicity is a property of the folded state of the porin.  相似文献   

16.
A panel of 45 Brucella ovis serologically positive sera were tested in immunoblots against B. ovis outer membrane proteins Omp31 and Omp25, purified by preparative SDS-gel electrophoresis. Forty-three sera reacted with Omp31, while only 11 reacted with Omp25, suggesting that Omp31 is identical to the previously reported immuno-dominant 29-kDa protein. Attempts to purify Omp31 on a larger scale by using procedures such as ion exchange-, reversed phase-, affinity- and gel filtration chromatography suggested that the outer membrane proteins were aggregated with rough lipopolysaccharide. Only denaturing SDS-gel filtration chromatography was able to separate proteins of about 29 kDa from rough lipopolysaccharide but did not separate Omp31 from Omp25 in B. ovis preparations. When used in an enzyme-linked immunosorbent assay, this 29-kDa protein preparation was less sensitive and less specific than the routinely used heat-extracted B. ovis antigen. A readily available recombinant E. coli, expressing the gene for Omp31 from Brucella melitensis 16 M, was used to extract and enrich recombinant Omp31 by a temperature-dependent Triton X-114-based technique. When this material was used in immunoblots with the 45 sera from B. ovis-infected sheep and with 10 monoclonal antibodies, raised against B. ovis Omp31, major differences in the antibody reactivity between the recombinant B. melitensis Omp31 and the B. ovis Omp31 were found. Such differences were unexpected because of the known structural and immunological relatedness of outer membrane proteins from various Brucella species. These results indicated that the antibody-response in B. ovis naturally-infected sheep against the immuno-dominant Omp31 was directed against epitopes which were only accessible when the protein was aggregated with rough lipopolysaccharides, or which were formed after aggregation but were not present in the recombinant protein.  相似文献   

17.
The diversity and domain structure of alpha beta T cell receptors (TCR) are similar to immunoglobulins based on sequence homologies, but the three-dimensional structure of the alpha beta-heterodimer has not been solved. To begin structure/function studies, we have compared the properties of a soluble single-chain V alpha V beta TCR (scTCR) expressed in three E. coli systems. The V alpha and V beta regions were expressed with pelB or ompA signal sequences or as a thioredoxin fusion protein. The scTCRs were detected only in the insoluble fraction of the cells and could be solubilized in guanidine and renatured to obtain properly folded scTCR from each system. Only a small fraction (1-5%) of the ompA and pelB scTCRs folded properly. In contrast, the thioredoxin fusion protein exhibited high total yields and a solubility that was ten times higher than the other scTCRs. The thioredoxin fusion protein also bound specifically to the peptide/MHC ligand with a KD of approximately 0.7 microM, as shown by a competitive inhibition assay with Fab fragments that recognize the MHC complex. Furthermore, estimates from saturation binding with antibodies that react with the native TCR indicated that up to 80% of the thioredoxin fusion protein was in the properly folded form. The improved yield, solubility, and binding activity of the thioredoxin-scTCR should make it useful for various structure/ function studies.  相似文献   

18.
A conserved 80-kDa minor outer membrane protein, D15, of Haemophilus influenzae has been shown to be a protective antigen in laboratory animals against H. influenzae type a (Hia) or type b (Hib) infection. To localize the protective B-cell epitope(s) within the D15 protein and to further explore the possibility of using synthetic peptides as vaccine antigens, a 20-kDa N-terminal fragment of D15 protein (truncated D15 [tD15]) was expressed as a fusion protein with glutathione S-transferase in Escherichia coli. The tD15 moiety was cleaved from glutathione S-transferase by using thrombin and purified to homogeneity. The purified soluble tD15 appeared to contain immunodominant protective epitope(s) against Hia and Hib, since rabbit antisera directed against tD15 were capable of protecting infant rats from Hia or Hib bacteremia. The ease of purification of soluble tD15, therefore, makes it a better candidate antigen than the full-length recombinant D15 which is produced as inclusion bodies in E. coli. Furthermore, both the purified tD15 fragment and a mixture of tD15-derived peptides spanning amino acid residues 93 to 209 of the mature D15 protein were capable of inhibiting the protection against Hib conferred on infant rats by rabbit anti-tD15 antiserum, indicating that the protective epitopes of D15 may not be conformational. However, the administration of pooled rabbit immune sera raised against the same panel of peptides failed to protect infant rats from Hib infection.  相似文献   

19.
Bacteriophage lambda adsorbs to its Escherichia coli K12 host by interacting with a specific cell surface receptor, the outer membrane protein LamB. Previous genetic analyses led us to define a set of residues at the surface of LamB, which belong to the lambda receptor site. Further genetic studies indicated that the C-terminal portion of J, the tail fibre protein of lambda, was directly involved in the recognition of the receptor site. The present work describe first in vitro studies on the interactions between J and LamB. The J gene of lambda was cloned into a plasmid vector under ptac promoter control and expressed in E. coli. We showed that J could be expressed at high levels (up to 28% of whole cell proteins), in an insoluble form. Anti-J antibodies, induced in rabbits immunized with insoluble J extracts, appeared to specifically neutralize lambda infection. Under defined conditions of extraction, the J protein was obtained in a soluble form. We showed that solubilized J was able to interact with LamB trimers in vitro. Implications for future studies on the interactions between LamB and J are discussed.  相似文献   

20.
A critical issue regarding the molecular architectures of Treponema pallidum and Borrelia burgdorferi, the agents of venereal syphilis and Lyme disease, respectively, concerns the membrane topologies of their major lipoprotein immunogens. A related question is whether these lipid-modified membrane proteins form intramembranous particles during freeze fracture electron microscopy. To address these issues, native borrelial and treponemal lipoproteins were reconstituted into liposomes of diverse composition. The importance of the covalently associated lipids for membrane association of lipoproteins was revealed by the observation that nonlipidated recombinant forms of both B. burgdorferi OspA and the T. pallidum 47-kDa immunogen (Tpp47) showed very weak or no binding to model bilayer vesicles. In contrast to control liposomes reconstituted with bacteriorhodopsin or bovine rhodopsin, two well-characterized transmembrane proteins, none of the lipoprotein-liposomes contained particles when examined by freeze fracture electron microscopy. To extend these findings to prokaryotic lipoproteins with relatively amphiphilic polypeptides, similar experiments were conducted with a recombinant nonlipidated form of Escherichia coli TraT, a lipoprotein which has putative transmembrane domains. The nonlipidated TraT oligomers bound vesicles derived from E. coli lipids but, surprisingly, did not form particles in the freeze-fractured liposomes. These findings support (i) a proposed topology of spirochetal lipoproteins in which the polypeptide is extrinsic to the membrane surface and (ii) the contention that particles visualized in freeze-fractured spirochetal membranes represent poorly characterized transmembrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号