首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BRCA1-associated RING domain (BARD1) was identified as a protein interacting with the breast cancer gene product BRCA1. The identification of tumorigenic missense mutations within BRCA1 that impair the formation of BARD1-BRCA1 complexes, and of BARD1 mutations in breast carcinomas, sustain the view that BARD1 is involved in BRCA1-mediated tumor suppression. We have cloned the murine Bard1 gene and determined that its expression in different tissues correlates with the expression profile of Brca1. To investigate the function of Bard1, we have reduced Bard1 gene expression in TAC-2 cells, a murine mammary epithelial cell line that retains morphogenetic properties characteristic of normal breast epithelium. Partial repression of Bard1, achieved by the transfection of TAC-2 cells with plasmids constitutively expressing ribozymes or antisense RNAs, resulted in marked phenotypic changes, consisting of altered cell shape, increased cell size, high frequency of multinucleated cells, and aberrant cell cycle progression. Furthermore, Bard1-repressed cell clones overcame contact inhibition of cell proliferation when grown in monolayer cultures and lost the capacity to form luminal structures in three-dimensional collagen gels. These results demonstrate that Bard1 repression induces complex changes in mammary epithelial cell properties which are suggestive of a premalignant phenotype.  相似文献   

2.
Previously (Liu et al, Cancer Res., 56: 3371-3379, 1996), we isolated a novel serine protease-like gene--Normal Epithelial Cell Specific-1 (NES1)--that is expressed in normal mammary epithelial cells but is down-regulated in most breast cancer cell lines. Here, we demonstrate that stable expression of NES1 in the NES1-negative MDA-MB-231 breast cancer cell line suppressed the oncogenicity as revealed by inhibition of the anchorage-independent growth and tumor formation in nude mice. Fluorescence in situ hybridization localized the NES1 gene to chromosome 19q13.3, a region that contains genes for related proteases (including the prostate-specific antigen) and is rearranged in human cancers. Similar to breast cancer cell lines, prostate cancer cell lines also lacked NES1 mRNA and protein expression. Together, these results strongly suggest a tumor-suppressor role for NES1 in breast and prostate cancer.  相似文献   

3.
Increased expression of the RI alpha subunit of cAMP-dependent protein kinase type I has been shown in human cancer cell lines, in primary tumors, in cells after transformation, and in cells upon stimulation of growth. The sequence-specific inhibition of RI alpha gene expression by an antisense oligodeoxynucleotide results in the differentiation of leukemia cells and growth arrest of cancer cells of epithelial origin. A single-injection RI alpha antisense treatment in vivo also causes a reduction in RI alpha expression and inhibition of tumor growth. Tumor cells behave like untransformed cells by making less protein kinase type I. The RI alpha antisense, which produces a biochemical imprint for growth control, requires infrequent dosing to restrain neoplastic growth in vivo.  相似文献   

4.
We previously reported increased expression of p27Kip1 in a series of human breast cancer cell lines, as compared to cell lines established from normal mammary epithelial cells. These data were surprising because this protein exerts a growth-inhibitory function in normal cells, and p27Kip1 has been proposed as a candidate tumor suppressor gene. A possible explanation for the paradoxical increase in p27Kip1 in the breast cancer cell lines is that they had become refractory to the inhibitory effects of this protein. To address this question, here, we transfected the MCF7 breast cancer cell line and the MCF10F nontumorigenic mammary epithelial cell line with a vector containing the p27Kip1 cDNA to obtain derivatives that express increased levels of p27Kip1. The increased expression of p27Kip1 in both of these cell lines was associated with lengthening of the G1 phase, an increase in the doubling time, a decreased saturation density, and a decreased plating efficiency. In the MCF7 cells, anchorage-independent growth and in vivo tumorigenicity were also suppressed. These effects were associated with decreased cyclin E-associated in vitro kinase activity in both cell lines. The increased expression of p27Kip1 was associated with a decreased level of expression of cyclin D1 in the MCF10F cells but an increased level of the cyclin D1 protein in the MCF7 cell line. Both derivatives expressed slightly increased levels of the cyclin E protein. Thus, breast cancer cells are still responsive to p27Kip1-mediated inhibition of cell growth despite the high basal level of this protein. These results suggest that therapeutic strategies that further increase the level of expression of p27Kip1 or mimic its activity might be useful in cancer therapy.  相似文献   

5.
The effect of interleukin 6 (IL-6) on normal and human mammary carcinoma epithelial cells was studied. IL-6 inhibited the growth of estrogen receptor-positive [ER(+)] breast cancer cell lines, which underwent apoptosis with prolonged treatment. In contrast, ER(-) breast cancer cell lines were resistant to IL-6-mediated growth inhibition. By examining the components of the IL-6 receptor (IL-6R) system, we found that ER(+) breast cancer cells expressed predominantly soluble IL-6Ralpha, whereas the ER(-) breast cancer cells expressed primarily the transmembrane form of the IL-6R, gp130. In addition, detectable levels of IL-6 were secreted into the medium by ER(-) but not ER(+) breast cancer cells. Furthermore, the supernatant obtained from IL-6-secreting, ER(-) cells suppressed the growth of IL-6-sensitive, ER(+) breast cancer cells in a paracrine fashion. Although IL-6 is secreted by ER(-) breast cancer cells, this cytokine does not seem to stimulate the proliferation of these cells in an autocrine fashion. These studies indicate that IL-6 can regulate the growth of normal and transformed human mammary epithelial cells differentially, and that IL-6 secretion by some ER(-) breast cancer cells can function as a paracrine growth factor, suppressing the growth of ER(+) breast cancer cells in vitro.  相似文献   

6.
7.
Amplification and overexpression of the c-myc gene are common in primary human breast cancers and have been correlated with highly proliferative tumors. Components of the epidermal growth factor (EGF) receptor signaling pathway are also often overexpressed and/or activated in human breast tumors, and transgenic mouse models have demonstrated that c-myc and transforming growth factor alpha (a member of the EGF family) strongly synergize to induce mammary tumors. These bitransgenic mammary tumors exhibit a higher proliferation rate than do tumors arising in single transgenics. We, therefore, chose to investigate EGF-dependent cell cycle progression in mouse and human mammary epithelial cells with constitutive c-myc expression. In both species, c-myc overexpression decreased the doubling time of mammary epithelial cells by approximately 6 h, compared to parental lines. The faster growth rate was not due to increased sensitivity to EGF but rather to a shortening of the G1 phase of the cell cycle following EGF-induced proliferation. In cells with exogenous c-myc expression, retinoblastoma (Rb) was constitutively hyperphosphorylated, regardless of whether the cells were growth-arrested by EGF withdrawal or were traversing the cell cycle following EGF stimulation. In contrast, the parental cells exhibited a typical Rb phosphorylation shift during G1 progression in response to EGF. The abnormal phosphorylation status of Rb in c-myc-overexpressing cells was associated with premature activation of cdk2 kinase activity, reduced p27 expression, and early onset of cyclin E expression. These results provide one explanation for the strong tumorigenic synergism between deregulated c-myc expression and EGF receptor signal transduction in the mammary tissue of transgenic mice. In addition, they suggest a possible tumorigenic mechanism for c-myc deregulation in human breast cancer.  相似文献   

8.
Breast cancer is the second leading cause of cancer-related deaths among women in the United States. Approximately 180,000 new cases of breast cancer are diagnosed each year and a quarter of these are fatal. Early detection is a key to survival of these patients. Unfortunately, no definitive markers are available to diagnose breast cancer at early stages. Identification of such early markers, therefore, is an important priority in breast cancer research. In order to identify early markers, we have focussed on understanding the molecular mechanisms that can lead to conversion of the normal mammary epithelial cells into precancerous immortal cells. Over last several years, we have developed in vitro models of human mammary epithelial cell immortalization which have allowed us to invoke the critical roles of the known tumor suppressor pathways in the maintenance of the untransformed state of mammary epithelial cells. These models are now being used to identify novel genes whose expression is important for normal mammary epithelial cell growth and whose altered expression contributes to breast cell transformation. Characterization of the molecular machinery whose alterations result in early preneoplastic transformation should help identify candidate genes for evaluation as potential early diagnostic markers.  相似文献   

9.
Oncogene-bearing transgenic mice develop various kinds of tumors depending on both the regulatory sequences and the specific oncogene used. These mice not only help to clarify the pathogenetic pathways leading to tumor formation, but can also be useful as models to test novel therapeutic strategies, including gene therapy. We have previously reported the establishment of an MMTV-neu (ErbB-2) transgenic mouse lineage, in which 100% of females develop breast tumors with many features similar to their human counterparts; these tumors are due to the over-expression of the activated rat neu oncogene in the mammary gland. From one such mouse we established a cell line of mammary adenocarcinoma named MG1361. We report here that the growth of this cell line can be inhibited in vitro and in vivo by transfection of a plasmid vector carrying an antisense anti-neu construct. This inhibitory effect is specific, as it is related to the expression of the antisense transgene (determined by RT-PCR), and to a reduction in neu mRNA and protein, as determined by Northern and Western blot analyses. Moreover, inoculation of cells carrying the antisense or the control vector in nude mice demonstrated that the morphological and biochemical effects elicited by the antisense construct resulted in a significantly slower rate of in vivo growth of tumor xenografts. Finally, significant mammary tumor growth inhibition was obtained after liposome-mediated direct inoculation of the same antisense vector in tumors spontaneously arising in MMTV-neu mice. Taken together, these findings suggest that targeting neu expression by an integrated large anti-neu antisense segment affects the in vivo growth of these tumors.  相似文献   

10.
11.
BRCA1 is a familial breast and ovarian cancer susceptibility gene and encodes proteins that function as tumor suppressors in human breast cancer cells. To elucidate the biological function of BRCA1, knowledge of cellular localization is needed. This can be achieved by using specific antibodies, so in a first step, we characterized by Western blot analysis the rabbit polyclonal antibodies (K-18) and (D-20) raised against the amino-terminus of human BRCA1 protein, and the polyclonal antibodies (C-20) and (I-20) raised against the carboxy terminus of human BRCA1 protein. The 220-kDa band corresponding to BRCA1 protein was recognized by the four tested antibodies in two mammary carcinoma cell lines (HBL100 and MCF7).  相似文献   

12.
Estrogen receptor alpha (ER) plays a key role in the development and progression of breast cancer as well as the treatment and outcome of breast cancer patients. In normal mammary epithelial cells, the level of ER fluctuates during the menstrual cycle in response to cyclical changes in estrogen. However, in breast cancer normal control of ER gene expression and/or function is lost. Of particular interest, the absence of ER in mammary carcinomas is associated with a less-differentiated phenotype and resistance to endocrine therapies. This review focuses on our current understanding of the mechanisms that regulate ER alpha gene expression and function in breast cancer. These include alteration of the ER gene, loss of gene expression, alternative splicing of ER RNA, posttranslational modification of the protein, and interaction of ER with other proteins that can modify its function.  相似文献   

13.
Cyclin D1 is frequently amplified and/or overexpressed in human breast cancer and several other types of cancer. To examine the role of cyclin D1 in normal mammary epithelial cells, in the present study we have overexpressed human cyclin D1 in the mouse mammary epithelial cell line HC11, using retrovirus-mediated transduction. We found that the cyclin D1 overexpresser clones displayed a decrease in saturation density, a decrease in anchorage-independent growth, an increased fraction of cells in the G(zero)-G1 phase, and increased expression of beta-casein, when compared to the control cells. The latter finding suggested that they were more differentiated. Furthermore, the cyclin D1 overexpressers displayed a marked increase in susceptibility to induction of apoptosis by serum withdrawal or by treatment with hydroxyurea or the protein kinase C inhibitors CGP 41251 and Ro31-8220. Thus, in some mammary epithelial cells, increased expression of cyclin D1 can inhibit growth, induce differentiation, and enhance apoptosis. These effects might be due, at least in part, to the fact that these derivatives displayed increased expression of the p27kip1 inhibitory protein.  相似文献   

14.
A novel human tumor growth inhibitor was identified by differential cDNA sequencing. The predicted amino acid sequence of this tumor-suppressing factor has a significant sequence homology to mouse mammary-derived growth inhibitor and thus was named mammary-derived growth inhibitor-related gene (MRG). MRG was found to be expressed in normal and benign human breast tissues but not in breast carcinomas. In situ hybridization analysis demonstrated a stage-specific MRG expression as follows. MRG was barely detectable in breast carcinomas, showed partial and weak expression in benign hyperplasia, but was expressed at a high level in normal breast epithelial cells. To determine if MRG can modulate in vivo growth of human breast cancers, we transfected a full-length MRG cDNA into MDA-MB-231 human breast cancer cells and studied the orthotopic growth of MRG transfectants versus control transfectants in the mammary fat pad of athymic nude mice. Overexpression of MRG in human breast cancer cells significantly suppressed cell proliferation in vitro and tumor growth in an orthotopic nude mouse model. These results suggest that MRG has tumor-suppressing activity, and the loss of MRG expression may be involved in the development and progression of breast cancer.  相似文献   

15.
The 17q-linked breast and ovarian cancer susceptibility gene (BRCA1) is believed to function as a tumor suppressor gene (Miki et al., 1994). In this report BRCA1 RNA expression has been analysed in adult mouse tissues with detailed attention to its expression in prepuberal and adult testis. Measurements of BRCA1 mRNA levels in highly purified somatic cells of the testis and in staged germ cells showed that high level BRCA1 mRNA expression is limited to the germ cells. Within the germ cell lineage, the high level expression was detected in meiotic cells, specifically pachytene spermatocytes and in post-meiotic round spermatids. This is in contrast to premeiotic germ cells which were found to express little or no BRCA1 mRNA. These observations, considered together with recent data on the expression of BRCA1 in breast epithelium, argues against a function for BRACA1 in early progenitor cells in both tissues and cells attention instead to roles intimately associated with terminal differentiation or with final rounds of cell division.  相似文献   

16.
Identification of human disease-causing genes continues to be an intense area of research. While cloning of genes may lead to diagnostic tests, development of a cure requires an understanding of the gene's function in both normal and diseased cells. Thus, there exists a need for a reproducible and simple method to elucidate gene function. We evaluate C-5 propyne pyrimidine modified phosphorothioate antisense oligonucleotides (ONs) targeted against two human cell cycle proteins that are aberrantly expressed in breast cancer: p34cdc2 kinase and cyclin B1. Dose-dependent, sequence-specific, and gene-specific inhibition of both proteins was achieved at nanomolar concentrations of ONs in normal and breast cancer cells. Precise binding of the antisense ONs to their target RNA was absolutely required for antisense activity. Four or six base-mismatched ONs eliminated antisense activity confirming the sequence specificity of the antisense ONs. Antisense inhibition of p34cdc2 kinase resulted in a significant accumulation of cells in the Gap2/mitosis phase of the cell cycle in normal cells, but caused little effect on cell cycle progression in breast cancer cells. These data demonstrate the potency, specificity, and utility of C-5 propyne modified antisense ONs as biological tools and illustrate the redundancy of cell cycle protein function that can occur in cancer cells.  相似文献   

17.
18.
Breast cancers require the presence of estrogens for the maintenance of growth at some time in the course of their development, as does normal breast tissue. Sulfation is an important process in the metabolism and inactivation of steroids, including estrogens, because the addition of the charged sulfonate group prevents the binding of the steroid to its receptor. Also, many of the therapeutic and chemopreventive agents used in the treatment of breast cancer are substrates for the sulfotransferases (STs). The activity and expression of four cytosolic STs, which are the human phenol-sulfating and monoamine-sulfating forms of phenol ST (PST), dehydroepiandrosterone ST, and estrogen ST (hEST), were assayed in normal breast cells and in breast cancer cell lines. ST activities and immunoreactivities were assayed in the estrogen receptor-positive human breast cancer cell lines ZR-75-1, T-47D and MCF-7; in the estrogen receptor-negative breast cancer cell lines BT-20, MDA-MB-468, and MDA-MB-231; and in normal human mammary epithelial cells. The PSTs were the most highly expressed ST activities in the breast cancer cell lines, although the levels of activity varied significantly. ZR-75-1 and BT-20 cells possessed the highest levels of activity of the human phenol-sulfating form of PST. The breast cancer cell lines showed only trace levels of dehydroepiandrosterone ST and hEST activities. In contrast, hEST was the only ST detectable in human mammary epithelial cells. Understanding the regulation of ST activity in these breast cancer and normal breast cell lines will improve our knowledge of the role of sulfation in breast cancer and provide a model with which to study the mechanism of action of estrogens in mammary cells.  相似文献   

19.
Although the link between the BRCA1 tumour-suppressor gene and hereditary breast and ovarian cancer is established, the role, if any, of BRCA1 in non-familial cancers is unclear. BRCA1 mutations are rare in sporadic cancers, but loss of BRCA1 resulting from reduced expression or incorrect subcellular localization is postulated to be important in non-familial breast and ovarian cancers. Epigenetic loss, however, has not received general acceptance due to controversy regarding the subcellular localization of BRCA1 proteins, reports of which have ranged from exclusively nuclear, to conditionally nuclear, to the ER/golgi, to cytoplasmic invaginations into the nucleus. In an attempt to resolve this issue, we have comprehensively characterized 19 anti-BRCA1 antibodies. These reagents detect a 220-kD protein localized in discrete nuclear foci in all epithelial cell lines, including those derived from breast malignancies. Immunohistochemical staining of human breast specimens also revealed BRCA1 nuclear foci in benign breast, invasive lobular cancers and low-grade ductal carcinomas. Conversely, BRCA1 expression was reduced or undetectable in the majority of high-grade, ductal carcinomas, suggesting that absence of BRCA1 may contribute to the pathogenesis of a significant percentage of sporadic breast cancers.  相似文献   

20.
Interleukin 6 (IL-6) is a pleiotropic inflammatory cytokine and its role in cancer is not yet clear. The effects of IL-6 on four breast cancer cell lines and normal mammary epithelium, cultured from milk were tested. Four different patterns of response to IL-6 were found depending on the differentiation status of the cells. In normal mammary epithelial cultures, the effects of IL-6 were mainly growth inhibitory, whereas in MCF-7, IL-6 had growth inhibitory and anti-adhesive effects. In T-47D and ZR-75-1 the anti-adhesive effects were prominent although the growth inhibitory effects were not. These anti-adhesive effects were associated with epithelioid to fibroblastoid morphological changes and a local decrease in E-cadherin expression. In the highly invasive cell line MDA-MB-231, which does not express E-cadherin, no effects of IL-6 were seen. IL-6 levels in the serum of 60 breast cancer patients were found to be increased in 27% (16/60) compared to 2% (1/50) in a control group. Furthermore, it was found that altered E-cadherin expression was seen in 69% of the primary tumours, although no significant association was found between raised serum IL-6 levels and altered E-cadherin expression. Finally IL-6 serum levels did not effect the survival of breast cancer patients. The authors therefore implicate IL-6 as a possible factor important in breast cancer progression and metastasis formation, although the clinical significance of this cytokine in breast cancer patients could not be established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号