首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Al-doped ZnO (AZO)/Ag/AZO multilayer coatings (50-70 nm thick) were grown at room temperature on glass substrates with different silver layer thickness, from 3 to 19 nm, by using radio frequency magnetron sputtering. Thermal stability of the compositional, optical and electrical properties of the AZO/Ag/AZO structures were investigated up to 400 °C and as a function of Ag film thickness. An AZO film as thin as 20 nm is an excellent barrier to Ag diffusion. The inclusion of 9.5 nm thin silver layer within the transparent conductive oxide (TCO) material leads to a maximum enhancement of the electro-optical characteristics. The excellent measured properties of low resistance, high transmittance in the visible spectral range and thermal stability allow these ultra-thin AZO/Ag/AZO structures to compete with the 1 μm thick TCO layer currently used in thin film solar cells.  相似文献   

2.
We investigated the electrical and optical properties of ZnO/Ag/ZnO multi-layer electrodes obtained by ion beam sputtering for flexible optoelectronic devices. This multi-layer structure has the advantage of adjusting the layer thickness to favor antireflection and the surface plasmon resonance of the metallic layer. Inserting a thin (Ag) metallic layer between two (ZnO) oxide layers decreases the sheet resistance while widening the optical transmittance window in the visible. We found that the optimal electrode is made up of a 10 nm thin Ag layer between two 35 nm and 20 nm thick ZnO layers, which resulted in a low sheet resistance (Rsq = 6 Ω/square), a high transmittance (T ≥ 80% in the visible) and the highest figure of merit of 1.65 × 10-2 square/Ω.  相似文献   

3.
H. Zhu  J. Hüpkes  A. Gerber 《Thin solid films》2010,518(17):4997-5002
Mid-frequency magnetron sputtering of aluminum doped zinc oxide films (ZnO:Al) from tube ceramic targets has been investigated for silicon based thin film solar cell applications. The influence of working pressure on structural, electrical, and optical properties of sputtered ZnO:Al films was studied. ZnO:Al thin films with a minimum resistivity of 3.4 × 104 Ω cm, high mobility of 50 cm²/Vs, and high optical transmission close to 90% in visible spectrum region were achieved. The surface texture of ZnO:Al films after a chemical etching step was investigated. A gradual increase in feature sizes (diameter and depth) was observed with increasing sputter pressure. Silicon based thin film solar cells were prepared using the etched ZnO:Al films as front contacts. Energy conversion efficiencies of up to 10.2% were obtained for amorphous/microcrystalline silicon tandem solar cells.  相似文献   

4.
We have fabricated, by simultaneous DC and RF magnetron sputtering, multilayer transparent electrodes having much lower electrical resistance than the widely used transparent conductive oxide electrodes. The multilayer structure consists of three layers (ZnO/Ag/ZnO). Ag films with different film thickness were used as metallic layers. Optimum thicknesses of Ag and ZnO films were determined for high optical transmittance and good electrical conductivity. Several analytical tools such as spectrophotometer, atomic force microscopy, scanning electron microscopy and four-point probe were used to explore the possible changes in electrical and optical properties. A high quality transparent electrode, having resistance as low as 3 Ω/sq and high optical transmittance of 90% was obtained at room temperature and could be reproduced by controlling the preparation process parameters. The electrical and optical properties of ZnO/Ag/ZnO multilayers were determined mainly by the Ag film properties. The performance of the multilayers as transparent conducting materials was also compared using a figure of merit.  相似文献   

5.
Al-doped, zinc oxide (ZnO:Al) films with a 1.2 at.% Al concentration were deposited on p-type silicon wafers using a sol-gel dip coating technique to produce a ZnO:Al/p-Si heterojunction. Following deposition and subsequent drying processes, the films were annealed in vacuum at five different temperatures between 550 and 900 °C for 1 h. The resistivity of the films decreased with increasing annealing temperature, and an annealing temperature of 700 °C provided controlled current flow through the ZnO:Al/p-Si heterojunction up to 20 V. The ZnO:Al film deposited on a p-type silicon wafer with 1.2 at.% Al concentration was concluded to have the potential for use in electronic devices as a diode after annealing at 700 °C.  相似文献   

6.
A series of ZnO/Cu/ZnO multilayer films has been fabricated from zinc and copper metallic targets by simultaneous RF and DC magnetron sputtering. Numerical simulation of the optical properties of the multilayer films has been carried out in order to guide the experimental work. The influences of the ZnO and Cu layer thicknesses, and of O2/Ar ratio on the photoelectric and structural properties of the films were investigated. The optical and electrical properties of the multilayers were studied by optical spectrometry and four point probe measurements, respectively. The structural properties were investigated using X-ray diffraction. The performance of the multilayers as transparent conducting coatings was compared using a figure of merit. In experiments, the thickness of the ZnO layers was varied between 4 and 70 nm and those of Cu were between 8 and 37 nm. The O2/Ar ratios range from 1:5 to 2:1. Low sheet resistance and high transmittance were obtained when the film was prepared using an O2/Ar ratio of 1:4 and a thickness of ZnO (60 nm)/Cu (15 nm)/ZnO (60 nm).  相似文献   

7.
The roughness development of Ag film was investigated for potential as a back reflector material in thin film solar cells on flexible stainless steel (STS) substrates. The influence of metal underlayers was evaluated in order to obtain a rough Ag film at a low deposition temperature (≤400 °C). By depositing Ag on a 100 nm Al underlayer to induce Ag–Al alloying, the film roughness was increased three times more than that of Ag films on bare STS at 400 °C. The Ag film deposited on an Al underlayer at 350 °C exhibited 75 nm roughness and uniformly distributed crystallites, which was effective for visible light scattering. The Ag–Al alloy phase was also controlled using the thickness ratio of Ag and Al. The present work clearly demonstrated that an Ag back reflector film with a higher roughness could be fabricated through inserting a metal underlayer at a deposition temperature much lower than the 500 °C that has been reported in earlier works.  相似文献   

8.
ZnO thin films of different thicknesses were deposited by pulsed direct-current magnetron sputtering onto poly(ethylene terephthalate) (PET) substrates and afterwards poly 3, 4-ethylenedioxythiophene:polystyrenesulfonate (PEDOT:PSS) was spin-coated onto the ZnO film. Spectroscopic ellipsometry in the Vis–fUV energy range (1.5–6.5 eV), X-ray diffraction and atomic force microscopy were used to reveal the properties of the deposited films. The size of crystallites increased from 5.1 to 7.4 nm, whereas the crystallinity of the ZnO films has been improved. The influence of different ZnO thickness on the optical properties of the PEDOT:PSS layer was studied as well. As the thickness of ZnO films increased, the surface roughness increased but the energy gap decreased after a critical thickness. Concerning the consequences to the PEDOT:PSS optical properties, no major changes occurred in the transition energies.  相似文献   

9.
Highly conducting aluminum-doped ZnO (30 nm)/Ag (5-15 nm)/aluminum-doped ZnO (30 nm) multilayer thin films were deposited on glass substrate by rf magnetron sputtering (for top/bottom aluminum-doped ZnO films) and e-beam evaporation (for Ag film). The transmittance is more than 70% for wavelengths above 400 nm with the Ag layer thickness of 10 nm. The resistivity is 3.71 × 10− 4 Ω-cm, which can be decreased to 3.8 × 10− 5 Ω-cm with the increase of the Ag layer thickness to 15 nm. The Haacke figure of merit has been calculated for the films with the best value being 8 × 10− 3 Ω− 1. It was shown that the multilayer thin films have potential for applications in optoelectronics.  相似文献   

10.
Current-voltage characteristics, spectral characteristics of short-circuit photocurrent and charge generation-recombination kinetics in InSe layer from the contact region of ZnO:Al/In2O3/InSe:Cd heterojunctions are investigated. The structures show photosensitivity in the photon energy range 0.96-3.30 eV. The photosensitivity in the low energy range is determined by absorption threshold of InSe:Cd, while in higher energy range, the optical transparency region of ZnO film prevails. For doping levels of 0.5-1.0 at.%, the ratio of the ambipolar diffusion coefficient and the recombination rate at the InSe surface is decreasing from 1.8 to 0.9 μm.  相似文献   

11.
High quality transparent conductive ZnO thin films with various thicknesses were prepared by pulsed filtered cathodic vacuum arc deposition (PFCVAD) system on glass substrates at room temperature.The high quality of the ZnO thin films was verified by X-ray diffraction and optical measurements. XRD analysis revealed that all films had a strong ZnO (200) peak, indicating c-axis orientation. The ZnO thin films are very transparent (92%) in the near vis regions. For the ZnO thin films deposited at a pressure of 0.086 Pa (6.5 × 10−4 Torr) optical energy band gap decreased from 3.21 eV to 3.19 eV with increasing the thickness. Urbach tail energy also decreased as the film thickness increased.Spectral dependence of the photoconductivity was obtained from measurements of the samples deposited at various thicknesses. Photoconductivities were observed at energies lower than energy gap which indicates the existence of energy states in the forbidden gap. Photoconductivities of ZnO thin films increase with energy of the light and reach its maximum value at around 2.32 eV. Above this value surface recombination becomes dominant process and reduces the photocurrent. The photoconductivity increases with decreasing the film thickness.  相似文献   

12.
Fluorine and aluminum-doped zinc oxide thin films, ZnO:F:Al, were prepared on soda-lime glass substrates by the sol-gel method and repeated dip-coating. The effect of the solution ageing and film thickness on the physical characteristics of the films was studied. Two ageing times, namely, two and seven days, and three different thicknesses, in the order of 220, 330, and 520 nm, were the main variables used in this work. As-deposited ZnO:F:Al films showed a high electrical resistivity, however after a vacuum thermal treatment, it was registered a significant decrease. Structural, optical, and morphological characterizations were carried out in vacuum-annealed films. The X-ray diffraction (XRD) patterns revealed that both as-deposited and vacuum-annealed ZnO:F:Al thin films were polycrystalline with a hexagonal wurtzite-type structure with a well-defined (002) diffraction peak, irrespective of the ageing time of the starting solution. The (002) peak shows a proportional increase with the thickness magnitude. An average crystallite size of about 20 nm was estimated using the well-known Scherrer's formula. From the surface morphological study it was observed that the grain size is almost independent of the ageing time of the starting solution, and the film thickness. Films presented an average optical transmittance in the visible range (400-700 nm) in the order of 90%, as well as a band gap of 3.3 eV. The gas-sensing properties of ZnO:F:Al thin films in an atmosphere containing different concentrations of carbon monoxide, and at different operation temperatures were probed. The highest sensitivity registered was of the order of 93%.  相似文献   

13.
Transparent thin films of Ga-doped ZnO (GZO), with Ga dopant levels that varied from 0 to 7 at.%, were deposited onto alkali-free glass substrates by a sol-gel process. Each spin-coated film was preheated at 300 °C for 10 min, and then annealed at 500 °C for 1 h under air ambiance. The effects of Ga dopant concentrations on crystallinity levels, microstructures, optical properties, and electrical resistivities of these ZnO thin films were systematically investigated. Photoluminescence spectra of GZO thin films were examined at room temperature. XRD results revealed that the undoped ZnO thin films exhibited a preferred orientation along the (002) plane and that the ZnO thin films doped with Ga showed degraded crystallinity. Experimental results also showed that Ga doping of ZnO thin films could markedly decrease surface roughness, improve transparency in the visible range, and produce finer microstructures than those of undoped ZnO thin films. The most promising films for transparent thin film transistor (TTFT) application produced in this study, were the 3 and 5 at.% Ga-doped ZnO thin films, both of which exhibited an average transmittance of 90.6% and an RMS roughness value of about 2.0 nm.  相似文献   

14.
Symmetric ZnO:Al/Au/ZnO:Al trilayers were sputter-deposited and characterized for transparent conducting electrodes, varying the thickness of the ZnO:Al (AZO) and Au layers. The optical transmission for normal light incidence is optimum for an AZO thickness of 50 nm, due to the suppression of reflection. In this case, the transmittance is more than 0.7 for wavelengths above 400 nm and for a Au thickness of 5 nm. At the same time, the sheet resistance is approx. 30 Ω, which can be decreased to 12 Ω with the increase of the Au thickness to 9 nm. This is achieved with a moderate loss in the optical transmission. The figure of merit for transparent conducting electrodes, as introduced by G. Haacke (J. Appl. Phys. 47 (1976) 4086) yields values from 29.4 × 10− 3 to 6.9 × 10− 3 Ω− 1, depending on the Au thickness and the considered wavelength range.  相似文献   

15.
Aluminum-doped zinc oxide (ZnO:Al) thin films (t = 68–138 nm) were prepared by thermal oxidation in air flow, at 720 K, of the multilayered metallic Zn/Al thin stacks deposited in vacuum onto glass substrates by physical vapor deposition. The effect of Al content (3.7–8.2 at.%) on the structural (crystallinity, texture, stress, surface morphology) and optical (transmittance, absorbance, energy band gap) characteristics of doped ZnO thin films was investigated. The X-ray diffraction spectra revealed that the Al-doped ZnO films have a hexagonal (wurtzite) structure with preferential orientation with c-axis perpendicular to the substrate surface. A tensile residual stress increasing with Al content was observed. The films showed a high transmittance (about 90%) in the visible and NIR regions. The optical band gap value was found to decrease with Al content from 3.22 eV to 3.18 eV. The results are discussed in correlation with structural characteristics and Al content in the films.  相似文献   

16.
An experimental method is developed for contact resistivity measurements of a buried interface in polycrystalline silicon (poly-Si) thin-film solar cell devices on aluminum doped zinc oxide (ZnO:Al) layers. The solar cell concept comprises a glass substrate covered with a temperature-stable ZnO:Al film as transparent front contact layer, a poly-Si n+/p/p+ cell, as well as a metal back contact. Glass/ZnO:Al/poly-Si/metal test stripe structures are fabricated by photolithographic techniques with the ZnO:Al stripes locally bared by laser ablation. The high-temperature treatments during poly-Si fabrication, e.g. a several hours lasting high-temperature step at 600 °C, are found to have no detrimental impact on the ZnO:Al/Si interface contact resistivity. All measured ρC values range well below 0.4 Ω cm2 corresponding to a relative power loss ΔP below 3% for a solar cell with 500 mV open circuit voltage and 30 mA/cm2 short circuit current density. By inclusion of a silicon nitride (SiNx) diffusion barrier between ZnO:Al and poly-Si the electrical material quality of the poly-Si absorber can be significantly enhanced. Even in this case, the contact resistivity remains below 0.4 Ω cm2 if the diffusion barrier has a thickness smaller than 10 nm.  相似文献   

17.
Aluminum doped zinc oxide (ZnO:Al) films were deposited by mid-frequency sputtering rotating tube targets at high discharge powers in a double cathode system. The magnetrons located inside the tube targets were tilted by ± 30°, leading to different racetrack orientations. Deposition rate and electrical properties of statically deposited films were investigated. Different properties of ZnO:Al films show lateral variations corresponding to the racetrack positions, which shift according to the tilt angles of double magnetrons. The highest average static deposition rate and the corresponding dynamic value were up to 360 nm/min and 111 nm m/min, respectively, for magnetrons tilted towards the center of the cathodes. The material properties of the ZnO:Al film prepared in dynamic mode were found to behave like the superpositions of properties of static films at different positions. Upon wet chemical etching in diluted hydrochloric acid (HCl), the surfaces of sputtered ZnO:Al films became rough, and three typical surface structures were observed and identified on statically deposited ZnO:Al films. The related plasma physics, growth and chemical etching mechanisms were discussed.  相似文献   

18.
Dong-Jin Yun 《Thin solid films》2009,517(16):4644-4649
Al-doped ZnO thin-films were deposited with the radio frequency magnetron sputtering technique at various temperatures and sputtering powers for a source/drain electrode in the pentacene thin-film transistor. With the increase in the deposition temperature and the decrease in the radio frequency sputtering power, the crystallinity was increased and the surface roughness was decreased, which lead to the decrease in the electrical resistivity of the film. Al-doped ZnO film deposited at 200 °C and sputtering power of 50 W showed a low resistivity (9.73 × 104 μΩcm), high crystallinity, low roughness and uniform surface morphology. The pentacene thin-film transistor fabricated with Al-doped ZnO film as a source/drain electrode showed a device performance, (mobility: 7.89 × 10 3 cm2/Vs and on/off ratio: ~ 5 × 104) which is comparable with an indium tin oxide electrode grown at room temperature.  相似文献   

19.
ZnO nanoparticles with average diameter of 25 nm were synthesized by a modified sol–gel method and used in the preparation of (in wt.%) (100 − x) poly(vinyl alcohol) (PVA)/x ZnO nanocomposite films, with x = 0, 1, 2, 3, 4, and 5. The PVA/ZnO films were exposed to UV radiation for 96 h and their thermal, morphological, and spectroscopic properties were investigated. In inert atmosphere, the nanocomposite films showed lower thermal stability than the pure PVA film, and the calorimetric data suggest an interaction between PVA and ZnO in the nanocomposite films. Some crystalline phases could be seen in the films with ZnO, and a direct dependence on the ZnO concentration was also observed. The original structure of ZnO nanoparticles remained unaltered in the PVA matrix and they were uniformly distributed on the film surface. The roughness of the PVA film was not modified by the addition of ZnO; however, it increased after 96 h of UV irradiation, more significantly in the nanocomposite films. The films showed an absorption band centered at 370 nm and a broad emission band in the UV–vis region when excited at 325 nm.  相似文献   

20.
We characterize sputter-deposited aluminum-doped zinc oxide (ZnO:Al) thin films on glass and silicon substrates by variable-angle spectroscopic ellipsometry in the spectral range of 240 nm to 1700 nm. The model dielectric function includes the excitonic effects of direct band-gap semiconductors in the presence of high carrier densities as well as the scattering of free carriers by ionized donors. We show that an energy-dependent broadening term of the band-gap model avoids an extended absorption tail below the absorption threshold as it usually results from Lorentzian broadening. Uniaxial anisotropy takes account of the oriented growth of hexagonal crystalline ZnO:Al thin films. All the parameters derived from the optical measurements such as surface roughness, free-carrier concentration and mobility agree with the results of independent thin-film characterization methods such as atomic-force microscopy, Hall and four-point probe measurements. In the case of the glass samples, we need an additional interface layer which is confirmed by transmission-electron microscopy as an intermix layer of ZnO and glass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号