首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
石墨烯只有碳原子厚度并有着强大的碳键网络结构,具有较高的电导率、高比表面积、化学性能好,在锂硫电池中有着广阔的应用前景。主要论述了石墨烯与S的复合物以及经氮掺杂石墨烯与S的复合物在改善锂硫电池电化学性能方面的研究进展,并对目前存在的问题和下一步的工作方向做出分析与展望。  相似文献   

2.
二硫苏糖醇(DTT)作为剪切剂,对高阶多硫化物进行剪切阻止其溶解,抑制穿梭效应的产生。以二硫苏糖醇(DTT)和多壁碳纳米管(MWCNTs)复合薄膜作为锂硫电池正极片与隔膜之间的阻隔层,抑制多硫化物的溶解和扩散,阻止穿梭效应,减小活性物质的损失,提高锂硫电池的容量和循环性能。利用透射电子显微镜(TEM)和扫描电镜(SEM)等进行结构和性能的表征。电化学测试结果表明,含DTT/MWCNTs阻隔层的锂硫电池在0.2 C倍率首次放电比容量达到1 674 mAh/g,活性物质的利用率达到99.9%。在1 C充放电300次循环后,容量依然保持在780 mAh/g,是首次放电容量1 094 mAh/g的71.3%,且库伦效率保持在95.3%以上。在5 C和10 C倍率下充放电,电池比容量分别达到597和214 mAh/g。  相似文献   

3.
目前,就动力电池能量密度而言,从镍氢电池的80Wh/kg到锂离子电池的150Wh/kg[1],再到锂离子聚合物电池的180Wh/kg,科学家不断地把电池的能量密度推向更高的水平。在锂离子电池体系中,正极材料的比容量很大程度上决定了电池的能量密度。从正极材料的比容量(见表1)来看,目前常规锂离子电池体系的能量密度已经很难继续提高。因此,迫切需要开发更高能量密度的新型电  相似文献   

4.
碳质材料在锂硫电池中的应用研究进展   总被引:1,自引:0,他引:1  
随着石墨负极的成功商用,锂离子电池在智能手机、笔记本电脑等便携式电子设备中已得到广泛的应用。经过20多年的发展,现有基于嵌锂化合物正极的锂离子电池已接近其理论容量,但仍不能满足高速发展的电子工业和新兴的电动汽车等行业的要求,寻找具有更高能量密度的电池系统迫在眉睫。锂硫电池系统具有极高的理论能量密度,在多种储能系统中是最具潜力的一种二次电池。但是锂硫电池中也存在硫的电导率极低、多硫化物溶解迁移等问题,使其在走向实用化的过程中遇到许多困难。纳米碳质材料在新型锂硫电池的开发过程中处于重要地位,通过纳米炭的引入,可以获得导电复合正极材料,控制多硫化物的穿梭,从而有望实现正极硫材料的高效利用。综述了基于纳米炭-硫复合正极材料,尤其是碳纳米管、石墨烯、多孔炭以及其杂化物等材料复合的电极,分析其结构与锂硫电池性能的关系,并展望锂硫电池的发展方向。  相似文献   

5.
杜宗玺  汪滨  华超  杜嬛 《功能材料》2021,52(2):2050-2056
锂硫电池存在正极活性材料导电性差、穿梭效应、锂枝晶生长等一系列问题,限制了其商业化发展.本文阐明了锂硫电池的工作原理和性能缺陷,介绍了隔膜改性的研究现状,从功能改性材料和静电纺丝生产工艺两方面总结了隔膜改性的主要思路和作用机理.  相似文献   

6.
7.
MXene是一种新兴的二维过渡金属碳化物或碳氮化物,优异的金属导电性、丰富的表面官能团和超薄二维结构使其在电化学储能方面的应用有巨大的潜力。锂硫电池的理论比容量较高,在新一代储能器件中极具竞争力。二维MXene及其组装的三维材料作为一种先进的硫载体可通过多种途径克服锂硫电池固有的导电性差和放电产物溶解严重的问题。本文综述了目前二维和三维结构的MXene材料在锂硫电池中的应用,分析了性能与结构之间的关系,总结了目前存在的挑战和困难并对未来的设计方向提出一些看法。  相似文献   

8.
锂硫电池因其高能量密度和低成本等优势成为新一代电化学储能技术的重要发展方向.然而,其较低的转换反应动力学和可逆性导致电池的实际容量、库仑效率和循环稳定性等仍难以满足实用化发展需求.对此,合理设计和开发具有导电、吸附、催化特性的功能材料是稳定和促进硫电化学反应的关键途径.得益于硼独特的原子和电子结构,硼基材料具有丰富且可...  相似文献   

9.
随着化石能源不断被开采消耗以及随之带来的环境污染,能源问题已经成为人类发展面临的重大课题[1].锂硫电池是极具应用前景的一种新型二次电池,不仅因其高能量密度而备受青睐[2],而且硫作为活性物质,成本低、储量丰富、环境友好[3].但是,由于硫及其放电产物〔硫化二锂(Li2S)/二硫化二锂(Li2S2)〕都不导电,硫放电后...  相似文献   

10.
详细地讨论了锂硫电池正极电化学反应机理,论述了利用紫外-可见光谱(UV-vis)、高效液相色谱(HPLC)和液相色谱-质谱联用(LS-MS)多种测试手段对电极反应过程的研究进展,分析了导致锂硫电池循环可逆性差的因素,并对其商业化应用进行了展望。  相似文献   

11.
以膨润土作为单质硫的载体,热处理得到含硫50%(质量分数)的膨润土/硫复合材料,采用X射线衍射、扫描电镜、透射电镜和比表面分析仪对复合材料进行结构、形貌和孔径分析,通过充放电性能测试和交流阻抗对锂硫电池进行电化学性能分析。电化学测试结果表明,在1.0~3.0V电压范围内,以0.2、0.5C大小的电流密度对电池进行充放电性能测试,首次放电比容量分别为795.6和586.0mAh/g,100次循环后对应的放电比容量分别为488.5和421.5mAh/g,容量保持率分别为61.3%和71.8%。  相似文献   

12.
由化石燃料的大量使用导致的全球能源和环境问题日益严重,已对人们的生产和生活产生了明显的影响。开发利用储量丰富的清洁能源(如太阳能、水能和风能等)有望较好地解决全球能源和环境问题。由于这些清洁能源存在地域性、间歇性等特点,高效的能量转化和存储技术是实现清洁能源规模化利用的关键和基础。锂离子电池作为绿色环保的储能器件,已在手机、笔记本电脑、相机等便携电子产品中广泛使用。近年来,锂离子电池开始在电动汽车等动力电池领域得到应用。但是,由于其能量密度不够高,导致锂离子电池电动汽车续航短、充电频繁及购车成本高。由金属锂为负极和硫为正极组成的锂硫电池的能量密度(2 600 Wh·kg~(-1))远高于目前广泛使用的锂离子电池。此外,硫正极材料具有储量丰富、毒性低、价格便宜、环境友好等突出优点。因此,锂硫电池被认为是当前最具研究前景的高能量密度二次电池之一。硫正极材料的本征导电性差、在充放电过程中存在较大的体积膨胀和收缩,储放锂过程中形成的多硫化锂易溶于电解液,使得锂硫电池的倍率性能、循环寿命和库伦效率等电化学性能离实际应用仍有较大距离。迄今为止,关于硫正极材料的研究工作,主要集中于如何提升其导电性、抑制或消除由多硫化锂的溶解引起的穿梭效应以及在反复的循环过程中保持电极材料微结构的稳定性等方面。相关研究表明,将硫与不同形貌的碳材料复合构筑成具有特殊微观结构的硫/碳复合正极材料可显著提高其导电性、抑制多硫化锂的穿梭效应和减缓储放锂前后的体积变化,进而改善倍率性能、循环稳定性和充放电效率等。此外,在硫正极材料中引入异质元素掺杂碳材料、金属氧化物和导电集合物均可通过化学吸附实现对易溶解多硫化锂的有效吸附。将上述多种改性方法结合也可使硫正极材料具有优异的电化学储锂性能。本文从锂硫电池的工作原理出发,总结了硫正极材料存在的主要问题,综述了近几年锂硫电池复合正极材料的研究进展,最后对锂硫电池正极材料的研究思路与发展趋势进行了分析和展望。  相似文献   

13.
由化石燃料的大量使用导致的全球能源和环境问题日益严重,已对人们的生产和生活产生了明显的影响.开发利用储量丰富的清洁能源(如太阳能、水能和风能等)有望较好地解决全球能源和环境问题.由于这些清洁能源存在地域性、间歇性等特点,高效的能量转化和存储技术是实现清洁能源规模化利用的关键和基础.锂离子电池作为绿色环保的储能器件,已在手机、笔记本电脑、相机等便携电子产品中广泛使用.近年来,锂离子电池开始在电动汽车等动力电池领域得到应用.但是,由于其能量密度不够高,导致锂离子电池电动汽车续航短、充电频繁及购车成本高.由金属锂为负极和硫为正极组成的锂硫电池的能量密度(2600 Wh·kg-1)远高于目前广泛使用的锂离子电池.此外,硫正极材料具有储量丰富、毒性低、价格便宜、环境友好等突出优点.因此,锂硫电池被认为是当前最具研究前景的高能量密度二次电池之一.硫正极材料的本征导电性差、在充放电过程中存在较大的体积膨胀和收缩,储放锂过程中形成的多硫化锂易溶于电解液,使得锂硫电池的倍率性能、循环寿命和库伦效率等电化学性能离实际应用仍有较大距离.迄今为止,关于硫正极材料的研究工作,主要集中于如何提升其导电性、抑制或消除由多硫化锂的溶解引起的穿梭效应以及在反复的循环过程中保持电极材料微结构的稳定性等方面.相关研究表明,将硫与不同形貌的碳材料复合构筑成具有特殊微观结构的硫/碳复合正极材料可显著提高其导电性、抑制多硫化锂的穿梭效应和减缓储放锂前后的体积变化,进而改善倍率性能、循环稳定性和充放电效率等.此外,在硫正极材料中引入异质元素掺杂碳材料、金属氧化物和导电集合物均可通过化学吸附实现对易溶解多硫化锂的有效吸附.将上述多种改性方法结合也可使硫正极材料具有优异的电化学储锂性能.本文从锂硫电池的工作原理出发,总结了硫正极材料存在的主要问题,综述了近几年锂硫电池复合正极材料的研究进展,最后对锂硫电池正极材料的研究思路与发展趋势进行了分析和展望.  相似文献   

14.
郭雅芳  肖剑荣  侯永宣  齐孟  蒋爱华 《材料导报》2018,32(7):1073-1078, 1083
锂硫电池因高比容量和高能量密度引起了研究者们的广泛关注,成为新型锂电池研究热点之一。隔膜作为锂硫电池的重要组成部分,是提高电池各方面性能的关键。现阶段锂硫电池隔膜改性工作主要集中于高性能涂层材料的设计与合成以及新型隔膜材料的开发。本文综述了锂硫电池隔膜改性的研究现状,分别从碳涂层隔膜、元素掺杂碳涂层隔膜、金属氧化物/碳复合涂层隔膜、新型薄膜材料和多层隔膜等五个方面进行介绍,指出了从隔膜入手提高导电性、抑制穿梭效应、减轻锂电极腐蚀,从而提高电池电化学性能的重要性。  相似文献   

15.
介绍了影响锂硫电池实用化的瓶颈问题,如硫利用率低、不可逆Li2S形成、硫正极结构不稳定等;综述了性能改善方案,如硫正极改性、S/C复合、合适的粘结剂、胶体电解质及锂负极保护等;最后提出了今后重点研究的方向.  相似文献   

16.
<正>随着移动通讯、便携式电子设备、空间技术和电动汽车等领域的迅速发展,以及人们节能环保意识的不断提高,发展具有更高比能量、更长循环寿命、低成本和绿色环保的新型锂离子电池具有十分重要的意义[1]。相对其他锂离子二次电池,锂硫二次电池在能量密度方面具有较为明显的优势,理论值可达2600Wh/kg,实际能量密度也达到了730Wh/kg左右[2]。此外,单质硫储量丰富、成本低廉、对环境友好、在安全性能方面也具有明显优势,  相似文献   

17.
通过简单的水热法以及随后的碳化制备出ZnO纳米材料,然后采用熔融吸附法将S渗入到ZnO纳米材料中制备出S/ZnO复合正极材料。用扫描电镜和X射线衍射仪来表征材料的结构和形貌,结果表明,ZnO基体由30~60nm的小颗粒聚集在一起组成微米级的薄片构成。电化学性能测试表明,在电流密度为335mA/g时,复合材料的首次放电比容量为1190mAh/g;在电流密度为500mA/g时,复合材料经过100次循环后放电比容量为516mAh/g,库伦效率为96%。  相似文献   

18.
锂硫电池作为一种新型储能体系,具有高比容量(1 675mAh/g、高能量密度(2 500Wh/kg)以及原材料价格低廉、对环境友好等优势,研究其在电动汽车、无人机、便携式电子设备和智能电网等领域的应用具有重要意义.但锂硫电池的产业化道路仍面临重重阻碍,硫及其还原产物的绝缘性、多硫化物的穿梭效应和锂枝晶等严重影响了电池的...  相似文献   

19.
锂离子电池等储能器件已被应用于电子设备和电动汽车中,但其低的理论容量已不能满足需求。锂硫电池因其具有高的理论比容量(1672 m Ah·g~(-1)),有望满足高能量密度的需求,但是锂硫电池还存在多硫化物的穿梭、硫导电性差等问题,阻碍了它的商业化应用。针对以上问题,不仅可以从正极材料的结构设计出发,也可以从电池的整体结构设计入手寻求解决的方法。评述了碳质材料的功能化设计在正极、正极与隔膜间的夹层设计、隔膜的优化以及新型隔膜中的研究进展,分析了结构、材料与锂硫电池性能之间的关系,指出了锂硫电池中碳质材料的发展方向。  相似文献   

20.
随着化石能源的日渐枯竭、能源危机和环境问题的日益突出,开发环境友好的二次电池能源体系迫在眉睫。锂硫电池作为一种新型的储能电池,其理论比容量高达1 675 mAh/g,质量密度可达2 600 Wh/kg,且原材料来源广、成本低等优点,使得其有望代替锂离子电池成为下一代理想的能源电池。近年来,可穿戴电子设备、智能纺织品的出现,对储能电池提出了更高的要求—柔性,因此开发柔性锂硫电池已经成为研究热点。作为锂硫电池的重要组成部分,柔性正极材料的研究和制备对柔性锂硫电池系统的开发至关重要。从锂硫电池柔性正极基体材料入手,对碳材料、导电聚合物材料和新兴的MOF材料等3个方面进行了分类总结,详细阐述了各自制备方法及对柔性正极性能影响。碳材料高的导电性和多孔结构设计、导电聚合物和MOF材料对多硫化物优异的化学吸附作用,均有助于抑制多硫化物的"穿梭效应",提升柔性锂硫电池的长循环电化学稳定性能。最后分析了现有锂硫电池柔性正极材料存在的缺陷与问题,对未来发展方向做出了展望。这将为开发新型的锂硫电池用柔性正极材料提供指导,同时为其它二次电池柔性正极材料开发过程中的共性问题提供实验和理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号