首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以二乙烯三胺和顺丁烯二酸酐为原材料经酯化反应制备酰胺亚胺功能单体(AMIDE),将其与异戊烯基聚氧乙烯醚大单体(TPEG)和不饱和酸丙烯酸(AA)共聚合成一种酰胺亚胺型聚羧酸系减水剂(AMIDE-PCE)。考察了TPEG分子、AA、AMIDE、引发剂H_2O_2、还原剂VC和链转移剂用量对产品性能的影响。确定了合成产品最佳的配比为:n(TPEG3000)∶n(AA)∶n(AMIDE)=1.0∶3.5∶1.0,H_2O_2和链转移剂用量分别为单体总质量的1.5%和1.8%,m(VC)∶m(H_2O_2)=0.5∶1.0。与市售聚醚型聚羧酸系减水剂(e-PCE)相比,AMIDE-PCE具有优异的分散性、明显的缓凝和增强效果。  相似文献   

2.
以丙烯酸(AA)、丙烯酸羟乙酯(HEA)和501醚类单体(TPEG)为主要原料,在本体聚合条件下合成了一种固体聚羧酸保坍剂,研究了温度、引发剂用量、链转移剂用量和酸醚比对产物性能的影响。实验结果表明,当反应温度为65℃,引发剂用量为大单体质量的0.6%,链转移剂用量为大单体质量的0.5%,TPEG∶AA∶HEA=1∶2∶4时,所制备的固态聚羧酸保坍剂具有最优的水泥净浆流动度保持性能,其与市售保坍剂A性能相当。最后利用红外光谱对产物分子结构进行表征,结果表明AA、HEA和TPEG聚合反应顺利进行。  相似文献   

3.
采用水溶液自由基聚合法,将异戊烯醇聚氧乙烯醚(TPEG)、丙烯酸(AA)及保坍助剂小单体(BTZ)共聚合成了聚羧酸保坍剂,探讨了AA与TPEG的摩尔比、保坍助剂的种类及用量、链转移剂用量、引发剂用量、聚合反应温度、单体滴加时间对保坍剂性能的影响。该保坍剂具有一定的减水率,可单独使用,也可以与普通聚羧酸减水剂复配使用。与普通聚羧酸减水剂复配使用时,新拌混凝土分散性及保坍性能优异。  相似文献   

4.
以甲基烯丙基聚氧乙烯醚(TPEG)、2-丙烯酰胺-2-甲基丙磺酸(AMPS)、丙烯酸(AA)为主要原料合成了聚羧酸系减水剂。通过正交实验研究了单体配比、引发剂用量等因素对聚羧酸系减水剂分散性能的影响。结果表明,最佳单体配比为:n(AA)∶n(TPEG)∶n(AMPS)=3∶1∶0.15,引发剂过硫酸铵(APS)用量为TPEG质量的0.25%。在最佳配比条件下,考察了反应时间和反应温度对聚羧酸系减水剂性能的影响。在70℃下反应5 h,减水剂对硬石膏的分散性能最佳,硬石膏的初始和2 h的净浆流动度分别为263 mm和255mm,表现出较好的缓凝效果。  相似文献   

5.
采用水溶液自由基聚合方式,氧化还原引发体系下,以丙烯酸(AA)、异戊烯醇聚氧乙烯醚(TPEG)和天门冬氨酸丙烯酯(AASP)为单体,合成了氨基酸酯改性的聚羧酸高性能减水剂。研究表明:当n(AA)∶n(TPEG+AASP)=3.5∶1,AASP用量为单体质量的9%,引发剂用量为单体总质量的2%,巯基丙酸用量为单体总质量的0.4%,反应温度为40℃,反应时间为4.5 h的条件下合成的聚羧酸减水剂效果最好。相比于未改性的聚羧酸减水剂,减水率提高2~4个百分点,保坍效果显著增强。  相似文献   

6.
以丙烯酸、501醚类单体和缓释单体A为主要原料,在本体聚合条件下,采用偶氮二异丁腈(AIBN)为引发剂合成一种固态缓释型聚羧酸减水剂。研究了温度、酸醚比、引发剂和链转移剂用量对减水剂性能的影响并分析了原因。结果表明,当反应温度为70℃,引发剂用量为大单体质量的0.5%,链转移剂用量为大单体质量的0.4%,n(TPEG)∶n(AA)∶n(缓释单体A)=1.0∶3.5∶2.5时,所制备的固态缓释型聚羧酸减水剂性能最佳,其性能与市售缓释型减水剂B相当。GPC分析结果表明,合成产物中大单体转化率高,产物均一。  相似文献   

7.
本文采用甲基烯丙基聚氧乙烯醚(TPEG)、丙烯酸(AA)为单体,在引发剂作用下,较低温度(40~45℃)直接聚合得到一种高减水型聚羧酸减水剂。研究发现最佳工艺条件为:n(AA)∶n(TPEG)=4.5∶1,链转移剂为单体总质量的0.6%,引发剂Vc为单体总质量的0.5%(双氧水30%,0.39%)。使用合成样品进行混凝土减水率测定及FT-IR、GPC等结构表征。该合成样品具有减水率高(33.56%)、反应转化率高、保坍性好等优点。  相似文献   

8.
《混凝土》2015,(8)
以基业长青聚醚大单体(BTL-PEG)、丙烯酸(AA)、甲基丙烯磺酸钠(SMAS)和基业长青保坍型功能助剂(HH)为不饱和单体,过硫酸铵(APS)为引发剂,巯基乙酸(TGA)为链转移剂,共聚合成高适应性的聚羧酸保坍剂。研究表明,在n(AA)∶n(HH)∶n(BTL-PEG)=1.5∶2.7∶1,SM AS用量为大单体用量的1%,APS用量为单体总质量的0.6%,TGA用量为单体总量的0.2%,反应温度为50℃,反应时间为3 h的条件下合成的保坍剂在低掺量下有较好的坍落度保持能力,与水泥有较好的适应性,与减水剂复配后效果明显优于单掺。  相似文献   

9.
通过以甲基烯丙基聚氧乙烯醚(TPEG),丙烯酸(AA)为主要原料合成缓释型聚羧酸减水剂,研究了反应温度、反应时间、酸醚比,以及2-丙烯酰胺-2-甲基丙磺酸(AMPS)、丙烯酰胺(AM)和不同引发剂的用量等因素对缓释型聚羧酸减水剂性能的影响.结果表明,缓释型聚羧酸减水剂最佳合成工艺为:n (AA)∶n (AMPS)∶n (AM)∶n (TPEG) =3.25:0.27:0.40:1.00,引发剂用量为TPEG总质量的0.25%,反应温度为70℃,滴加反应时间为4h.所合成的缓释型聚羧酸减水剂,在水灰比为0.29,掺量为0.4%的条件下,水泥初始净浆流动度达280 mm,净浆流动度损失较小,混凝土坍落度损失小,1h几乎无损失,2h损失30 mm,与其它缓释型聚羧酸减水剂相比具有更好的缓释效果.  相似文献   

10.
以甲基烯丙基聚氧乙烯醚(TPEG)、丙烯酸(AA)、2-丙烯酰胺-2-甲基丙磺酸(AMPS)、丙烯酰胺(AM)等作为合成的主要原材料,按n(AA)∶n(AMPS)∶n(AM)∶n(TPEG)=(3.5~2.0)∶0.3∶0.3∶1.0,选取酸醚比[n(AA)∶n(TPEG)]为3.5、2.75、2.0,催化剂用量为大单体质量的0.05%、0.10%、0.15%,在不同温度下合成缓释型聚羧酸系减水剂。通过测试水泥净浆经时流动度,确定不同合成温度下最佳的酸醚比和催化剂用量。并对按最佳配比合成的减水剂进行性能试验研究,结果表明,采用适当的合成工艺,常温和高温条件下合成的缓释型聚羧酸减水剂的性能基本相同。  相似文献   

11.
以乙醇胺与磷酸进行酯化反应制得乙醇胺磷酸酯,再与马来酸酐进行开环反应制得磷酸酯改性单体MA-POE,并进一步与丙烯酸(AA)及异戊烯基聚氧乙烯醚(TPEG)进行水溶液自由基共聚合成磷酸酯基团改性聚羧酸减水剂。考察了AA、磷酸酯单体及TPEG三者比例、引发剂用量、催化剂用量等对减水剂分散性的影响,并与市售普通聚羧酸减水剂的抗高岭土性能进行了对比。结果表明,当n(AA)∶n(磷酸单体)∶n(TPEG)=4∶1∶1,双氧水用量为单体总物质的量的4%,n(抗坏血酸)∶n(双氧水)=0.50时,合成的减水剂分散及分散保持性能较优,对高岭土的敏感性优于市售减水剂,这主要源于其对高岭土的吸附作用更小。  相似文献   

12.
以异戊烯醇聚氧乙烯醚(TPEG)、丙烯酸(AA)、保坍型单体A或保坍型单体B为共聚单体,在引发剂过硫酸铵(APS)和链转移剂巯基乙酸(TGA)作用下,分别合成了短效聚羧酸保坍剂P-T1和长效聚羧酸保坍剂P-T2.测试结果表明,P-T1和P-T2单体转化率均较高,对水泥的适应性良好,保坍性能优异,能很好地满足不同工程对保坍性能的要求.  相似文献   

13.
以异戊烯醇聚乙二醇单甲醚(TPEG)、丙烯酸羟丙酯(HPA)、丙烯酸(AA)为主要原料,在本体聚合条件下合成聚羧酸粉剂保坍剂。通过实验考察了引发剂偶氮二异丁腈(AIBN)用量及加入方式,链转移剂用量及酸酯比对产品性能的影响。最佳反应条件:TPEG∶HPA∶AA=0. 48∶1. 7∶1,引发剂占单体质量百分比为1%,反应温度为60℃,滴加2. 5h,AIBN分两批次均等加入,保温1. 5 h,反应结束。通过对产品进行凝胶渗透色谱(GPC)、总有机碳分析仪(TOC)微观分析及净浆混凝土的宏观性能检测,合成的粉剂聚羧酸保坍剂(S-BT)和本公司大规模生产的水剂保坍剂(W-BT)能够达到一致的性能。该方法工艺简单,在不降低工作性能的同时大大降低了公司的运输成本,具有很好的经济价值。  相似文献   

14.
采用甲基烯丙基聚氧乙烯醚(TPEG)与不饱和羧酸在氧化还原体系下合成聚羧酸减水剂。研究了反应温度、反应时间、单体与不饱和羧酸摩尔比(酸醚比)、引发剂用量及分子量调节剂用量对聚羧酸减水剂性能的影响。在n(AA)∶n(Itaconic acid)∶n(Thioglycolic acid)∶n(TPEG)=1.7∶0.23∶0.005∶1,m(initiator)∶m(TPEG)=0.20%、反应时间4 h、反应温度45℃时,聚羧酸减水剂各项性能最佳。  相似文献   

15.
采用4-羟丁基乙烯基聚氧乙烯醚(VPEG)为大单体,以双氧水(H_2O_2)/新型还原剂(F)为氧化还原体系,硫代乙醇酸为链转移剂合成了VPEG型聚羧酸减水剂PCE-1,探讨了合成温度及原材料配比对聚羧酸减水剂分散性的影响。结果表明,PCE-1的最佳制备工艺为:n(AA)∶n(VPEG-4000)=4.6∶1时,H_2O_2、新型还原剂、硫代乙醇酸用量分别为大单体VPEG质量的0.75%、0.2%、0.4%,合成温度15℃,滴加时间1.0 h。经测试验证,PCE-1的混凝土分散性和保坍性优于市售的VPEG型聚羧酸减水剂PCE-A和HPEG型聚羧酸减水剂PCE-B。  相似文献   

16.
夏季混凝土施工和大体积混凝土需要较长的凝结时间。研究了以不同分子质量的大单体烯丙基聚氧乙烯醚(APEG)、丙烯酸(AA)、顺丁烯二酸(MA)和缓凝型单体(GA)合成缓凝型聚羧酸系减水剂,确定了合成产品的最佳工艺条件为:n(APEG1200)∶n(AA)∶n(MA)∶n(GA)=1.0∶0.5∶2.0∶0.5;采用引发剂过硫酸铵[(NH4)2S2O8]用量为单体总质量的2.0%。与市场上的同类产品相比,合成的缓凝型聚羧酸系减水剂具有明显的缓凝作用。  相似文献   

17.
采用本体聚合工艺,以异戊烯醇聚氧乙烯醚(TPEG)、丙烯酸(AA)和丙烯酸羟乙酯(HEA)为原料,偶氮二异丁腈(AIBN)为引发剂,研究了本体聚合工艺中反应温度、引发剂投料方式、引发剂用量、单体摩尔比和单体滴加时间对制备固体缓释聚羧酸减水剂分子结构及性能的影响。结果表明:随着反应温度的升高,制备的固体缓释型聚羧酸减水剂转化率略有提高,初始分散性逐渐降低,在80℃时缓释效果最佳;AINB用量为0.4%,采用滴加工艺,单体摩尔比为:n(AA)∶n(HEA)∶n(TPEG)=2.0∶2.5∶1.0,AA和HEA分别滴加3 h,所制备的减水剂分散性能最好。  相似文献   

18.
以异戊烯醇聚氧乙烯醚(TPEG2400)、2-丙烯酰胺-2-甲基丙磺酸(AMPS)、马来酸酐(MA)、过硫酸铵(APS)为原料,合成了改性聚醚型聚羧酸减水剂,然后测定其流动性能。结果表明,聚醚型聚羧酸减水剂的最佳合成参数为反应单体摩尔比TPEG∶MA∶AMPS=1∶2∶3,引发剂用量为单体质量的4%,固含量为30%,反应时间为5 h,反应温度为80℃;当折固掺量为0.1%减水剂,水灰比为0.35时,水泥的净浆流动度可以达312 mm。由于将MA、AMPS和TPEG聚合,TPEG中存在醚键提供了较厚的亲水性立体保护膜,使得水泥粒子有稳定的分散性,故合成的聚醚型聚羧酸减水剂具有优良的性能。  相似文献   

19.
以HPEG、丙烯酸、中间酯等原料合成保坍型聚羧酸减水剂,用单因素试验选出保坍型聚羧酸减水剂的最优配方:HPEG相对分子质量为2400,酸醚比n(AA)∶n(HPEG)=7.5,引发剂、链转移剂、中间酯P用量分别为HPEG单体质量的0.8%、1.6%、0.4%。将最优配方的保坍型聚羧酸减水剂与丙三醇、乙二醇等进行复配得到最优配比的保坍型防冻减水剂,利用红外吸收光谱对其进行结构表征。结果表明:将10%保坍型减水剂与6%乙二醇、6%丙三醇、2%亚硝酸钠、0.3%引气剂、3%和易性调节剂复配(用水配平至100%)得到最优保坍型防冻减水剂,混凝土初始减水率高、保坍性能好、和易性好、抗冻效果好。  相似文献   

20.
常温合成烯丙基聚氧乙烯醚型聚羧酸减水剂研究   总被引:1,自引:0,他引:1  
按照正交试验的方法,利用双氧水-连二亚硫酸钠(SD)氧化还原引发体系,以烯丙基聚氧乙烯醚(APEG)、马来酸酐(MA)、丙烯酰胺(AM)及丙烯酸(AA)为原料,进行自由基聚合,制备醚类聚羧酸系高性能减水剂.研究结果表明:最佳聚合工艺参数为:反应的最优配合比n(MA)∶n(APEG)∶n(AM)∶n(AA)=1.6∶1.5∶1.5∶4.0.其中,SD用量为单体总质量的百分比4.0%,双氧水(30%)用量为单体总质量的4.0%.使用合成的样品进行了水泥净浆、水泥砂浆和混凝土试验.该合成样品具有掺量低、减水率高、水泥适应性广、保坍性好、增强效果好等突出优点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号