首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1 INTRODUCTIONTitaniumaluminidesareattractivecandidatema terialsforaerospacestructuralandengineapplica tions ,owingtotheirlowdensi  相似文献   

2.
Alloying mechanism and magnetic saturation of tungsten and W-40 wt.% Ni milled powders were investigated using XRD, SEM and saturation magnetisation techniques. Mechanical alloying was proceeded by deformation of FCC Ni toward FCT phase and BCC to BCT in W, hence formation of supersaturated tetragonal Ni(W) solid solution. Milling of pure W yielded a product comprised of magnetic BCT and non-magnetic nanocrystalline BCC W powders. The magnetic saturation of W increased at the early milling stage and decreased later due to the transition of the BCC W structure toward anisotropic close packed crystal structure and formation of nanograins with high specific surface. Magnetic saturation of W–Ni powders decreased with milling time but increased after forming a metastable tetragonal solid solution.  相似文献   

3.
1 INTRODUCTIONSincethediscoveryoftheuniaxialNd2 Fe14 Bcompoundin 1983[1,2 ] ,theNdFeBalloyshavebeenwidelyusedforpermanentmagnetapplicationsowingtotheirexcellentmagneticproperties ,suchashighcoercivity ,high energy products[3,4 ] .Intheserareearthpermanentmagnets ,afurtherexcitingrecentdevelopmentisthesuggestionofnano compositeex changemagnetscombiningthelargecoercivitiesinhardmagnetswithlargeinductionsfoundinsoftertransitionmetalmagnets[5,6 ] .Indeed ,thenano com positemagnetshavebeent…  相似文献   

4.
Microstructural evolution during mechanical alloying of Ag and Zn, and subsequent heat treatments were investigated. The mechanical alloying was carried out in a SPEX 8000D miller. The microstructural characterization was obtained by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The thermal behavior was studied using differential scanning calorimetry (DSC). Based on the results obtained, it can be concluded that at the early stages of milling was possible to detect the ?, β, β′, α solid solutions and remaining Zn. Later, the ?, β, β′ and Zn phases disappeared while the Zn concentration of the α solid solution was strongly increased. After 7.2 ks of milling, the mechanical alloying process reached a steady state. During this period, both the composition and crystallite size of the α solid solution remained practically unchanged. On the other hand, subsequent heat treatments of milled powders showed that the α solid solution could also be obtained by the combination of mechanical alloying and heat treatment. Finally, the evolution of the microstructure during milling and annealing was combined to propose an optimal processing route in order to obtain a α solid solution.  相似文献   

5.
A fiber laser was used to modify the surface composition of a Ti–6Al–4V plate through deposition of the blown powder mixture of Ti–45 wt.%Nb. Scanning electron microscopy and energy dispersive spectroscopy (EDS) were employed to examine the clad sections microstructure and chemical composition. The optimized set of laser processing parameters, including the laser power of 1100 W, the laser scan speed of 350 mm/min (or ∼5.83 mm/s), the laser spot diameter of 2 mm and the powder feed rate of 0.1 g/s was found with the identification of combined parameters, the laser specific energy, the powder density and the newly defined laser supplied energy (i.e. representing the amount of energy given to the unit mass of the blown powder). It is shown that, with these parameters, continuous beads can be formed with pore-free sections and a homogeneous composition corresponding to that of β (Ti, Nb) solid solution phase. Furthermore, Al and V elements are thoroughly replaced with a more biocompatible element, Nb, in the second layer of a Ti–Nb cladding build-up on the surface of the Ti–6Al–4V plate (i.e. after ∼1 mm in clad thickness from the clad/substrate interface).  相似文献   

6.
Ti and Ag powders were mixed with different ball milling time (1, 2, 5 and 10 h) and sintered into porous Ti–3Ag alloys. The samples were treated with hydrothermal treatment, and their apatite-inducing abilities were further evaluated by immersion in modified simulated body fluid. The results indicate that the high surface energy brought by powder refinement leads to the decline of Ag, but promotes the oxidation of Ti during the sintering process. Meanwhile, the hydrothermal treated porous Ti–3Ag alloys prepared by the powders ball milled for 10 h possess the best apatite-inducing ability.  相似文献   

7.
The effect of cyclic deformation on superelasticity was investigated in a Ti–26 at.% Nb alloy. Loading and unloading tensile tests with a constant maximum applied strain of 2.5% were carried out until the 500th cycle. The critical stress for inducing the martensitic transformation and superelastic strain decreased, while the accumulated residual strain increased with increasing number of cycles. The increase in the residual strain during cyclic deformation was due mainly to α′′ martensite phase stabilization. Both the residual strain and the residual α′′ martensite phase increased with increasing number of cycles. The stability of superelasticity was improved, i.e. the residual strain decreased and the superelastic strain increased, by intermediate-temperature annealing and/or aging. The specimen annealed at 873 K for 0.6 ks followed by aging at 573 K for 3.6 ks exhibited the most stabilized superelasticity, owing to the combination effect of work hardening and fine ω-phase precipitation.  相似文献   

8.
The refinement of large boride ribbons in the as-cast TiAl alloy is the essential issue for aerospace industry application,which is difficult to avoid by classical casting techniques.The present paper seeks to explore the possibility of the semi-solid process in manufacturing Ti-47Al-2Cr-2Nb-0.8 B(at%) alloy.An important result is that,except forming a nondendritic globular structure,the semi-solid process also plays a crucial role in refining large borides for the TiAl alloys with boron.In the ...  相似文献   

9.
The size, crystal structure and phase transformation of Ni49.8Mn28.sGa21.7 alloy particles prepared by planetary ball milling (PBM) and vibration ball milling (VBM) were investigated by SEM, XRD and DSC. The results show that the particles milled by PBM for 4 h exhibit irregular polyhedron, with the size distribution between 5 pm and 40 pm. These particles present disordered fct structure with no phase transformation behaviour. When annealed at 600℃ for 1 h, the crystal structure of the particles evolves from disordered fct to Heusler completely. The particles milled by VBM for 4 h exhibit flaky shape, with the size distribution from 3 μm to 30μm. The particles present disordered fcc structure with no phase transformation behaviour. However the crystal structure of these particles doesn't transform from disordered fcc to Heusler completely aider annealing at 600 ℃ for 1 h, for the severe lattice distortion induced in the VBM process is not eliminated entirely.  相似文献   

10.
The surface of pure copper alloyed with Ti using double glow discharge process was investigated. The morphology, structure and forming mechanism of the Cu-Ti alloying layer were analyzed. The microhardness and wear resistance of the Cu-Ti alloying layer were measured, and compared with those of pure copper. The results in-dicate that the surface of copper activated by Ar and Ti ions bombardment is favorable to absorption and diffusion of Ti element. In current experimental temperature, as the Ti content increases, the liquid phase occurs between the deposited layer and diffused layer, which makes the Ti ions and atoms easy to dissolve and the thickness of Cu-Ti al-loying layer increase rapidly. After cooling, the structure of the alloying layer is composed of CuTi, Cu4Ti and Cu(Ti) solid solution. The solid solution strengthening and precipitation strengthening effects of Ti result in high surface hardness and wear resistance.  相似文献   

11.
12.
In this study the α″ stress-induced martensitic transformation and damping behaviour of the superelastic β-Ti–25Ta–25Nb alloy are investigated by tensile tests at room temperature and by dynamic mechanical analysis (DMA) in tensile mode for different applied stresses. Tensile tests show a fully non-linear elastic domain and, consequently, a specific method is proposed to determine the elastic modulus. Due to the wide range of temperature over which the martensitic transformation occurs in this class of alloys, the martensitic start temperature, Ms, is not a relevant parameter to characterize the transformation and the temperature Mmax corresponding to the temperature of maximum transformation is used. The important gap between these two temperatures explains the fully non-linear elastic behaviour of this alloy during conventional tensile tests. It is observed that two main damping sources occur in this alloy: friction at austenite/martensite interfaces during the martensitic transformation and friction at martensite/martensite interfaces at lower temperature. However, a third unexpected damping peak is also observed at high stress. Its origin is discussed with respect to the orientation of the applied stress and with regard to the most favourably oriented martensite variants determined by Schmid factor analysis.  相似文献   

13.
High energy milling carried out in a planetary ball mill was used in order to alloy elemental powders and to obtain nanostructures and oxide dispersion strengthened (ODS) alloys. Owing to such advantages, this process was retained so as to elaborate ODS tungsten alloys from tungsten and yttrium powders by using a WC–Co milling system with 16 balls. The experiments were performed for a duration of up to three days while applying a 400 rpm speed and a ball-to-powder weight ratio of 16. The W–1 vol%Y blends were subsequently compacted at room temperature and sintered at 1800 °C for 4 h. The present paper deals with the effect of milling time on the mechanical behavior of the powders, on the refinement of the microstructure, on the improvement of the second phases distribution and on the contamination by cobalt, carbon and oxygen. At last, these results are related with the behavior of the powders during densification.  相似文献   

14.
The hydrogen embrittlement behavior induced by the martensite transformation of Ni–Ti superelastic alloy subjected to a dynamic cyclic tensile test with hydrogen cathodic charging has been investigated by hydrogen thermal desorption analysis. The critical stress for the martensite transformation steeply decreases with increasing number of deformation cycles, whereas the critical stress for the reverse transformation only slightly changes. The dynamic stress-induced martensite transformation markedly enhances hydrogen absorption, compared with that of the martensite phase itself. The hydrogen concentration at the surface layer of the specimen is evaluated to be above 3500 mass ppm; nevertheless, no fracture associated with the stress-induced martensite transformation occurs. In addition, no hardening is observed at the surface layer of the specimen despite the formation of the hydride and hydrogen enrichment. The hydrogen thermally desorbed at a low temperature markedly increases, indicating that the hydrogen states are changed by the dynamic martensite transformation. Note that interactions between hydrogen and the phase transformation are probably irreversible, although the phase transformation is reversible. The present study shows, for the first time, that the hydrogen embrittlement behavior of the alloy strongly depends on the dynamic change of the hydrogen states accompanied by the martensite transformation.  相似文献   

15.
J. Cao  P. He  M. Wang 《Intermetallics》2011,19(7):855-859
The Ti–Ni–Si filler metal was manufactured by mechanical milling of TiH2, Ni and Si powder mixture. The microstructure of the filler metal and TiAl brazed joint was analyzed by means of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The effect of milling time on the brazing powder was investigated. It was found that NiSi phase formed when the milling time exceeded 120 min. The typical microstructure of the TiAl brazed joint using Ti–Ni–Si filler metal was TiAl/Ti3Al/TiAlNi2/Ti3Al + Ti5Si3/TiAlNi2/Ti3Al/TiAl. The effect of Si on the microstructure was investigated and the result suggested that Si addition resulted in the aggregation of Ti and formation of Ti3Al phase in the middle of joint. The optimal parameters were brazing temperature of 1140 °C and holding time of 30 min. The fracture was brittle and propagated between the TiAlNi2 layer and Ti3Al + Ti5Si3 layer.  相似文献   

16.
Ageing behavior of Cu-15Ni-8Sn alloy prepared by mechanical alloying   总被引:1,自引:0,他引:1  
1INTRODUCTIONCu-Ni-Snal1oyshavebeenconsideredaspossiblesubstitutesforCu-Bealloysinthemanu-factureofc0nnectors,springcomponentsandsoforth,intheelectronicsindustriesbecauseoftheiroutstandingpropertiessuchashighstrength,highelasticmodulus,exce1lenterosi0nresistanceandhighresistancetostressrelaxationatelevatedtemperature['].Inaddition,com-paredwithCu'Bealloys,thelowcostandminorpollutioninthepreparationprocessofthealloyhavealsoattractedtheincreasingattentionofmanyresearchers.However,extensiv…  相似文献   

17.
The effects of annealing temperature on microstructures, phase transformation, mechanical properties, and shape memory effect of Ti–20Zr–10Nb–5Al alloy were investigated. X-ray diffraction(XRD) patterns show that the alloy is composed of single hexagonal ɑ'-martensite phase for both as-rolled sample and sample annealed at773 K for 30 min, while single orthorhombic ɑ' phase exists in the samples annealed at 873 and 973 K for30 min. The optical observations indicate that the alloy is recrystallized when annealed at 873 K, and the grain size of the sample annealed at 973 K is about five times larger than that annealed at 873 K. Both of the samples annealed at 873 and 973 K show almost the same reverse martensite transformation start temperature of 483 K as demonstrated by thermal dilatation tests. The critical stress values for martensite reorientation(σ_M) are 392 and 438 MPa for the alloys annealed at 873 and 973 K, respectively. The maximum shape memory strain is 2.8 %, which is obtained in the alloy annealed at 873 K due to the lower σ_M. Moreover,the sample annealed at 873 K exhibits larger tensile stress and tensile strain due to the smaller grain size.  相似文献   

18.
The effect of alkaline chemical milling used for dimensionally reducing aluminum-alloy structures is assessed in terms of total fatigue life and crack-initiation mechanisms. Chemically milled Al–Mg–Si specimens exhibited a 50% reduction in average fatigue lives compared to electropolished Al–Mg–Si specimens at comparable peak-applied loads above macroscopic yield. The fatigue-life reduction of the chemically milled specimens is likely associated with early onset of crack initiation due to pit-induced-stress concentrations. Fractographic analyses suggest a transition in the crack-initiation mechanisms from predominantly {1 1 1}-slip plane cracking to partly or predominantly pit-induced-stress driven depending on the depth of surface pits.  相似文献   

19.
Ti–48Al–6Nb (at.%) porous alloys are fabricated by elemental powder metallurgy to study the pore formation and propagation mechanism. Reactive diffusion, pore formation process, and pore characteristics of the porous TiAl–Nb alloys are investigated at different temperatures. It is found that the porous alloys exhibit a uniform, maze-like network skeleton, viz., a typical α2-TiAl3/γ-TiAl fully lamellar microstructure. The reactive diffusivities between Ti and Al powders are dominant during the Ti–Al–Nb powder sintering. Gas release during sintering also plays an important role in the pore propagation and the compact expanding process. In addition, a pore-formation model is proposed to interpret the growth mechanism of pores and skeletons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号