首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
考虑温湿度对墙体材料热湿物性参数的影响,建立以相对湿度和温度为驱动势的墙体热湿耦合传递模型。在变温湿度边界条件下对墙体非稳态热湿耦合传递过程进行分析,计算得到墙体表面温湿度及热流密度,与不考虑传湿情况进行对比分析。结果表明:不考虑吸放湿时墙体内表面温度比考虑吸放湿时变化幅度大,且前者内表面平均温度与后者相差约0.9℃;因墙体内表面吸放湿作用引起的相变潜热约占总壁体传热量的27.5%,在负荷计算中不可忽略。  相似文献   

2.
《混凝土》2016,(12)
采用课题组研发的可控式墙体热湿耦合试验台,通过控制砌块墙体两侧恒温恒湿箱的温湿度,使墙体处于温湿度不同的工况下,测得墙体的平均传热系数以及温度场和湿度场,分析墙体两侧温度变化对湿度传递的影响。研究结果表明,混凝土夹心秸秆砌块墙体的传热系数为0.466 W/(m2·K),墙体的保温性能良好;小麦压缩秸秆块的填充增强了混凝土砌块保温性能;小麦秸秆压缩块吸湿性能较强,对墙体的湿传递具有阻碍作用。  相似文献   

3.
为快速得到复合墙体温度场及湿度场,基于热湿耦合传递理论,以Fortran语言编制了复合墙体的热湿耦合传递计算程序,并在Windows操作环境下混编VB程序和Fortran程序,开发出复合墙体热湿性能模拟软件(HMCT1.0)。该软件可对不同室内外环境参数下复合墙体温度场、湿度场进行快速计算及分析,为方便快捷的选择合适墙体组材奠定了基础,并结合实例说明其应用。  相似文献   

4.
本文将热湿气候地区墙体热湿耦合传递模型中的等温吸放湿曲线斜率、液态水传递系数、水蒸气传递系数、导热系数、比热容作为输入参数,将温度和相对湿度作为输出参数,通过生成Sobol序列对热湿物性参数进行采样,并使用Sobol灵敏度分析法对采样结果进行灵敏度分析,得到热湿物性参数的一阶灵敏度指数和总灵敏度指数,进而分析各热湿物性参数对墙体内温湿度分布的影响程度。结果表明,等温吸放湿曲线斜率和液态水传递系数对墙体内的温湿度分布影响较大,而导热系数和比热容对墙体内的温湿度分布影响较小。因此,在进行墙体热湿耦合模拟时需将等温吸放湿曲线斜率和液态水传递系数视为温度和湿度的函数处理,而水蒸气传递系数、导热系数和比热容可视为常数处理。  相似文献   

5.
以4层复合墙体为例,在室外空气温湿度正弦变化、室内空气温湿度固定条件下,对墙体外壁面、分层界面(由室外到室内分为界面1~3)、内壁面的温度、热流密度、单位面积热阻、含湿量的变化进行分析。朝向室外的墙面为外壁面,朝向室内的墙面为内壁面。界面1为水泥砂浆层与离心玻璃棉保温层界面,界面2为离心玻璃棉保温层与红砖层界面,界面3为红砖层与水泥砂浆层界面。外壁面、界面1、界面2温度主要受室外温度影响,界面3、内壁面温度主要受室内温度影响。界面1热流密度在3 h前增大,3 h开始逐渐降低,之后呈正弦波动,与室外温度变化同步。界面2热流密度始终为正,在4 h前非常小,4 h后呈正弦波动,变化滞后于室外温度。界面3热流密度在1 h前增大,然后逐渐减小并趋于0,始终为正值。考虑传湿时,界面1~3单位面积热阻比忽略传湿时略小。界面2的单位面积热阻大于界面1、3,且变化最小。界面1含湿量受室外空气相对湿度影响明显,与室外相对湿度变化相比,存在一定延迟。  相似文献   

6.
地下洞室多孔墙体热湿传递的数值模拟   总被引:1,自引:0,他引:1  
提出了一种以温度与相对湿度为驱动势的多孔墙体热湿耦合传递的数学模型,该模型同时考虑了水蒸气与毛细孔内液态水的传递。采用控制容积法将理论方程组离散并编制了计算程序,对深埋地下洞室的墙体进行了热湿传递的数值模拟,得到了墙体温度、相对湿度、热流率、湿流率的变化规律。结果表明,墙体传热过程趋于稳定的时间远小于传湿过程。  相似文献   

7.
建筑围护结构内的热湿耦合传递是一个非常复杂的过程,其研究是降低建筑能耗、评估和预防湿害、提高室内热舒适性、室内卫生及优化围护结构性能的基础。新建节能建筑墙体具有初始含湿量大的特点,若墙体湿积累过大,则容易出现墙体表面剥蚀、渗漏、发霉甚至结构出现损坏的现象。墙体干燥时,传热传质过程同时发生且相互耦合。目前相关热物性仿真软件、理论研究和设计规范主要建立在热传递的基础上,忽略了湿传递的影响,对新建建筑墙体干燥不适用。WUFI~? Pro热湿仿真软件充分考虑了材料本身含湿量、风驱雨、太阳辐射、长波辐射、毛细传输和夏季结露等典型气候的影响,实现了对自然气候条件下建筑构件非稳态热湿性能的真实计算。节能墙体多在外墙添加内外保温层来增加围护结构的传热热阻,且在保温层内外两侧分别添加隔汽层和空气层的措施来防止保温层受潮,最终提高围护结构的保温性能。为墙体美观,多在围护结构的内外两侧分别黏贴墙纸和釉面砖。采用WUFI~? Pro对北京地区2种典型的建筑墙体进行热湿耦合传递模拟,分析新建建筑墙体在不同保温层材料和位置时的干燥过程,以及保温层两侧的隔汽层和空气层、墙体两侧的墙纸和釉面砖对墙体干燥过程的影响。模拟用室外条件为北京典型气象年小时室外气象参数,室内条件设定室内冬季供暖温度T_1=20℃,夏季室内温度设计值T_2=25℃,全年平均相对湿度为50%。模拟外围护结构属于西向,墙体温湿度初始条件为:相对湿度为100%,温度为15℃。模拟结果表明:内保温层的设置非常不利于围护结构的干燥,容易在内保温层和砌块之形成湿积累,降低围护结构的耐久性;EPS、PU和XPS都能降低围护结构含湿量,但EPS更有利于墙体干燥;隔汽层和空气层的添加可一定程度上阻止保温层受潮,避免造成湿积累,进而提高围护结构的保温性能;釉面砖和墙纸的黏贴将严重延缓围护结构的干燥过程,降低围护结构的保温性能,缩减建筑构件的使用寿命。  相似文献   

8.
于水  张旭 《建筑节能》2010,38(7):68-71
围护结构内热湿耦合传递是一个复杂的过程,其研究是降低建筑能耗,改善室内空气品质,提高围护结构性能的基础。CHAMPS-BES软件由美国能源部和雪城大学共同开发,该软件可以用来模拟计算多场耦合,包括热、湿、空气和污染物耦合模拟计算,同时可以用来模拟建筑的整体能耗。介绍了该软件的基本数学模型、边界条件、气象条件等,并分析了某种建筑围护结构内热湿耦合迁移过程,得到围护结构初始温湿度和室外气象条件对其温湿分布影响最大,新建围护结构在约700d后其内部相对湿度才达到稳定周期性变化,所以在为避免日后产生结露、发霉等现象,以及避免降低围护结构的耐久性方面,需要注意减低建筑围护结构的初始相对湿度以及避免建筑长期处于高湿度环境中。  相似文献   

9.
通过建立非保温墙体和XPS保温墙体模型,应用COMSOL Multiphysics软件模拟墙体的热湿变化规律,分析农村保温墙体的热湿性能.结果表明:水泥砂浆与混凝土交界面、混凝土与水泥抹灰交界面分别受室外、室内温度影响大于相对湿度影响.潜热净吸热量密度在非保温墙体和XPS保温墙体内分别占净吸热量密度的21.7%和14....  相似文献   

10.
考虑水分升华、凝华、气液和固液相变,以温度和水蒸气分压力为驱动势建立了气、液、固三相水分共存的多层墙体热湿耦合传递模型.构建了1面500mm(长)×450mm(高)×240mm(厚)试验墙体,利用恒温恒湿箱试验测试了箱体温度范围为常温~-33.94℃时墙体内部温度和平衡相对湿度的变化,分析了水分固液相变过程的特征,并对热湿耦合传递模型数值模拟计算结果的正确性进行了验证.结果表明:试验墙体内部温度和水蒸气分压力数值模拟计算结果和实测结果变化趋势相同,具有良好的一致性,各点温度数值模拟计算结果的最大相对误差为1.68%,平均相对误差为0.44%;水蒸气分压力数值模拟计算结果的最大相对误差为27.92%,平均相对误差为13.50%.该模型数值模拟计算结果能够满足一般工程领域的精度要求,可应用于三相水分共存的多层墙体热湿耦合传递过程数值模拟研究.  相似文献   

11.
运用开尔文定律和克劳修斯-克拉贝龙方程,将多孔建筑材料内水蒸气传递量和液态水传递量转变为以水蒸气分压力为驱动势的统一函数,以温度和水蒸气分压力为驱动势建立了热湿耦合传递模型,并模拟分析了上海地区自然干燥状态下加气混凝土砌块墙体10a的热湿性能变化规律.结果表明:对于初始温度为298K,含湿量(质量分数,下同)分别为2.91%,3.45%,5.03%,8.60%的4种工况,经过1a的使用后,墙体内的温湿度分布不再受初始条件影响;在正常情况阶段,墙体内表面相对湿度均小于1.0,不会出现结露现象,但是在部分时段超过了0.8,易产生霉变;墙体内部含湿量呈周期性变化,空调季为3.34%~8.31%,平均值4.45%;采暖季为3.31%~3.69%,平均值3.47%.  相似文献   

12.
考虑传湿对多孔介质墙体传热的影响,根据单元体质量守恒和能量守恒,建立了非稳态热湿耦合数学模型模拟多孔介质墙体的热湿传递过程,并在长沙对一墙体的热湿耦合传递开展了实验测试,应用COMSOL Multiphysics软件对所建模型进行数值计算,将计算结果与EN15026, HAMSTAD等验证实例和实验测试结果对比,验证了所建数学模型的正确性。结果表明,模型的计算结果与验证实例的结果高度吻合,与实验测试结果吻合良好,室内侧分界面处空气相对湿度的平均偏差为4.7%,最大偏差为8.6%,温度的平均偏差为0.4℃,最大偏差为0. 74℃,室外侧分界面处空气相对湿度的平均偏差为3.7%,最大偏差为7.2%,温度的平均偏差为0.93℃,最大偏差为1.97℃,证明了该模型有很好的准确性。  相似文献   

13.
建筑围护结构的热湿传递是影响建筑工程耐久性、室内环境及建筑能耗的重要因素。为研究其热湿耦合传递规律,对单层围护结构多孔介质的热湿耦合传递规律进行了实验研究。通过建立240mm厚混凝土围护结构热湿耦合测试实验台,对围护结构干燥阶段的含湿量、温湿度等参数进行测量。通过对实验结果的分析发现,围护结构内部含湿量传递很慢,其传递速率远远低于热量传递速率,且与温度分布的变化灵敏度不同,含湿量分布受边界条件的变化影响小。实验期间围护结构内部含湿量的分布始终是中间高两侧低;实验墙体在最开始的3个月尤其是第1个月,含湿量下降是最明显的。实验1个月时中心点的含湿量下降25%,3个月后下降47%。  相似文献   

14.
为了研究建筑热桥在室内外热湿条件综合作用下墙体内部温湿度分布,本文以Henry提出的热湿传递模型为基础,建立了建筑热桥二维热湿传递数学模型,并以上海地区冬季室外典型年气象参数作为计算条件,计算了L形建筑热桥在该条件周期作用下墙体内部温湿度分布和热流密度变化,对热桥局部保温提出了建议.  相似文献   

15.
Budaiwi模型的修正及实验验证   总被引:3,自引:0,他引:3  
在Fourier定律和Fick定律的基础上,考虑墙体内部相变及太阳辐射的影响,以墙体中的空气含湿率和温度为驱动势对Budaiwi模型进行了修正,弥补了质传递方程中的遗漏之处。为了验证模型的正确性,建立了一个实验装置测试实际气候条件下墙体内的温度和相对湿度,并将实验结果跟模型预测结果进行了对比,模型预测结果跟试验测试结果吻合良好。室外侧分界面处的空气相对湿度平均误差为4.44%,平均温度偏差为1.31 K,室内侧分界面处的空气相对湿度平均偏差为6.3%,平均温度偏差为1.26 K。该改进模型能较精确的预测墙体内的热湿耦合迁移情况。  相似文献   

16.
墙体的传热传质对建筑围护结构的热工性能、建筑能耗和室内环境有着十分重要的影响。本文以相对湿度和温度为驱动势建立多层墙体一维非稳态热湿空气耦合传递模型(HAM模型),并利用有限元法进行了数值求解,重点关注了湿迁移对传热的影响机理。研究结果表明:考虑传湿时墙体内外壁面附近出湿度梯度大,相变速率大,湿流密度大;墙体内部会产生湿积累;墙体内部湿迁移主要受蒸汽扩散主导,墙体交界面处局部Nu数变化受湿迁移的影响大;相变过程对传热的影响不可以忽略。  相似文献   

17.
建筑物的耗能与建筑围护结构的传热传湿密切相关,了解建筑墙体内部的热湿传递对建筑节能有重要影响。以相对湿度和温度梯度为驱动势建立墙体一维非稳态热、湿和空气耦合传递模型(HAM模型),并利用有限元法进行了数值求解,重点关注了湿传递对传热的影响。数值结果表明:考虑传湿时墙体内部温度波动小,墙体进行热湿传递会产生湿积累,降低墙体使用年限;考虑传湿时通过墙体总传热量比不考虑传湿时多7.5%;考虑传湿时内壁面最大平均数比不考虑传湿时大0.78。  相似文献   

18.
为探究高湿地区复合保温墙体空气层、隔汽层两种防结露措施的效果,建立了以温度与相对湿度为计算驱动势的热湿耦合传递模型,并根据实验数据对模型进行了验证。进一步使用模型模拟了冬夏季高湿工况条件下,内外两种保温墙体内部的热湿变化情况。根据模拟结果得出,保温墙体在两种材料界面处具有较高的结露风险。在全年高湿地区,空气层可有效降低墙体内部的结露风险,隔汽层在此工况下防结露效果不佳。  相似文献   

19.
《Planning》2017,(1)
利用热湿耦合数学模型,通过数值计算分析不同因素时湿传递对围护结构的传热影响,并将该影响等效为对传热系数的修正。结果表明:传湿时围护结构传热系数随材料水蒸气渗透系数的增大而增大,随导热系数增大而减小。室外温度高于室内温度,传热系数修正幅度随室外气温升高而增大,反之减小。当室外气温低于室内时,传热系数随室外相对湿度的升高而增大;反之减小。室内外温湿度相差较大地区,更需考虑湿迁移对传热的影响。从减小湿传递和节能角度考虑,炎热潮湿地区宜采用内保温,传热系数比外保温时低约4.0%;寒冷干燥地区宜采用外保温,传热系数比内保温低约0.7%。  相似文献   

20.
根据浅埋湖底隧道的结构特点,利用混凝土热湿耦合原理及有限元方法,将隧道内环境实际温度、相对湿度不断变化的情况作为其时变的边界条件,对实际隧道主体结构钢筋混凝土一年内的变形情况进行了数值模拟分析.通过对数值模拟与现场测试结果的比较分析,数值模拟值与现场测试结果符合较好,说明基于多孔介质热湿传输耦合原理的混凝土变形数值模拟方法是可行的,隧道主体结构混凝土的变形较小,对工程结构的正常使用和耐久性有利.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号