共查询到20条相似文献,搜索用时 15 毫秒
1.
以经活化处理的石墨烯(AG)为主体材料, 通过化学还原法制备了石墨烯负载硫的复合正极材料AG/S。SEM、EDX和TEM测试结果表明经活化处理后形成手风琴结构的AG, 有利于电解液的浸润; 活性物质硫均匀地负载在AG表面, 同时沉积在AG的层间。电化学测试表明: 在400 mA/g电流密度下, AG/S复合正极材料首次放电比容量为1452.9 mAh/g, 经过200次循环之后, 放电比容量仍保持在909.7 mAh/g; 在1000 mA/g电流密度下, AG/S复合材料首次放电比容量为1309.9 mAh/g, 经过200次循环之后, 放电比容量仍保持在717.1 mAh/g。AG/S复合正极材料的倍率性能、库仑效率和循环性能优异, 这得益于小尺寸的硫在材料中均匀分布, 活化石墨烯优良的导电性以及其结构对硫的固化作用。 相似文献
2.
《新型炭材料》2017,(4)
分别以多巴胺和正硅酸乙酯为碳源和硅源,先采用一步法合成出球形C@SiO_2复合材料,然后通过化学刻蚀制得一种表面积达875 m2·g-1、表面富含N原子的中空炭微球(N-HCS)。N-HCS独特的纳米结构可以有效地抑制硫在充放电过程中的体积膨胀和聚硫化物的穿梭效应,同时表面掺杂的氮能够提高活性物质的导电性,进而提高正极材料的循环稳定性和大倍率性能。结果表明,该碳/硫复合材料的在0.2 C电流密度下的首次放电容量达1 179 mAh·g~(-1);经100次反复充放电后,其放电容量仍可保持在540 mAh·g~(-1);具有较好的大电流倍率性能,在电流密度为1 C和2 C时,其可逆放电容量可分别稳定在343 mAh·g~(-1)和247 mAh·g~(-1)。 相似文献
3.
4.
由化石燃料的大量使用导致的全球能源和环境问题日益严重,已对人们的生产和生活产生了明显的影响.开发利用储量丰富的清洁能源(如太阳能、水能和风能等)有望较好地解决全球能源和环境问题.由于这些清洁能源存在地域性、间歇性等特点,高效的能量转化和存储技术是实现清洁能源规模化利用的关键和基础.锂离子电池作为绿色环保的储能器件,已在手机、笔记本电脑、相机等便携电子产品中广泛使用.近年来,锂离子电池开始在电动汽车等动力电池领域得到应用.但是,由于其能量密度不够高,导致锂离子电池电动汽车续航短、充电频繁及购车成本高.由金属锂为负极和硫为正极组成的锂硫电池的能量密度(2600 Wh·kg-1)远高于目前广泛使用的锂离子电池.此外,硫正极材料具有储量丰富、毒性低、价格便宜、环境友好等突出优点.因此,锂硫电池被认为是当前最具研究前景的高能量密度二次电池之一.硫正极材料的本征导电性差、在充放电过程中存在较大的体积膨胀和收缩,储放锂过程中形成的多硫化锂易溶于电解液,使得锂硫电池的倍率性能、循环寿命和库伦效率等电化学性能离实际应用仍有较大距离.迄今为止,关于硫正极材料的研究工作,主要集中于如何提升其导电性、抑制或消除由多硫化锂的溶解引起的穿梭效应以及在反复的循环过程中保持电极材料微结构的稳定性等方面.相关研究表明,将硫与不同形貌的碳材料复合构筑成具有特殊微观结构的硫/碳复合正极材料可显著提高其导电性、抑制多硫化锂的穿梭效应和减缓储放锂前后的体积变化,进而改善倍率性能、循环稳定性和充放电效率等.此外,在硫正极材料中引入异质元素掺杂碳材料、金属氧化物和导电集合物均可通过化学吸附实现对易溶解多硫化锂的有效吸附.将上述多种改性方法结合也可使硫正极材料具有优异的电化学储锂性能.本文从锂硫电池的工作原理出发,总结了硫正极材料存在的主要问题,综述了近几年锂硫电池复合正极材料的研究进展,最后对锂硫电池正极材料的研究思路与发展趋势进行了分析和展望. 相似文献
5.
由化石燃料的大量使用导致的全球能源和环境问题日益严重,已对人们的生产和生活产生了明显的影响。开发利用储量丰富的清洁能源(如太阳能、水能和风能等)有望较好地解决全球能源和环境问题。由于这些清洁能源存在地域性、间歇性等特点,高效的能量转化和存储技术是实现清洁能源规模化利用的关键和基础。锂离子电池作为绿色环保的储能器件,已在手机、笔记本电脑、相机等便携电子产品中广泛使用。近年来,锂离子电池开始在电动汽车等动力电池领域得到应用。但是,由于其能量密度不够高,导致锂离子电池电动汽车续航短、充电频繁及购车成本高。由金属锂为负极和硫为正极组成的锂硫电池的能量密度(2 600 Wh·kg~(-1))远高于目前广泛使用的锂离子电池。此外,硫正极材料具有储量丰富、毒性低、价格便宜、环境友好等突出优点。因此,锂硫电池被认为是当前最具研究前景的高能量密度二次电池之一。硫正极材料的本征导电性差、在充放电过程中存在较大的体积膨胀和收缩,储放锂过程中形成的多硫化锂易溶于电解液,使得锂硫电池的倍率性能、循环寿命和库伦效率等电化学性能离实际应用仍有较大距离。迄今为止,关于硫正极材料的研究工作,主要集中于如何提升其导电性、抑制或消除由多硫化锂的溶解引起的穿梭效应以及在反复的循环过程中保持电极材料微结构的稳定性等方面。相关研究表明,将硫与不同形貌的碳材料复合构筑成具有特殊微观结构的硫/碳复合正极材料可显著提高其导电性、抑制多硫化锂的穿梭效应和减缓储放锂前后的体积变化,进而改善倍率性能、循环稳定性和充放电效率等。此外,在硫正极材料中引入异质元素掺杂碳材料、金属氧化物和导电集合物均可通过化学吸附实现对易溶解多硫化锂的有效吸附。将上述多种改性方法结合也可使硫正极材料具有优异的电化学储锂性能。本文从锂硫电池的工作原理出发,总结了硫正极材料存在的主要问题,综述了近几年锂硫电池复合正极材料的研究进展,最后对锂硫电池正极材料的研究思路与发展趋势进行了分析和展望。 相似文献
6.
7.
采用球磨混合及热复合法制备硫/BP2000复合正极材料(含硫量42%(质量分数)),分别以PTFE、明胶和PEO作为粘结剂,考察了不同粘结剂对锂-硫电池电化学性能的影响。采用热重分析(TGA)、X射线衍射(XRD)、循环伏安法(CV)和恒流充放电表征其物化性能和电化学性能。结果表明,明胶和PTFE对于提高硫正极的电化学性能和维持硫正极的循环稳定性具有积极意义。其中,在0.2 C充放电时,PTFE作粘结剂的电池循环50次后比容量保持741.2 mAh/g,明胶作粘结剂的电池循环50次后放电比容量保持788 mAh/g(按单质硫的质量计算)。 相似文献
8.
《材料导报》2020,(8)
采用浓硝酸蒸汽改性乙炔黑(H-AB)表面,再将其与升华硫(S)通过热处理法复合制备S/H-AB复合材料。X射线衍射(XRD)、傅里叶变换红外(FTIR)光谱、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和氮气吸附仪测试结果表明,经过浓硝酸蒸汽改性后,乙炔黑不仅在表面引入羧基官能团,且孔径和比表面积均增大,硫均匀地包覆于乙炔黑表面及内部。电化学测试结果表明,通过在H-AB纳米微粒表面引入羧基强亲水性官能团,固定单质硫及多硫化锂,有效减少穿梭效应的发生,同时减小了活性物质与电解液的接触阻抗,改善硫电极的循环稳定性,提高活性物质硫的利用率。S/H-AB复合正极的放电比容量和循环性能明显优于S/AB,经过100周循环后,其放电比容量仍保持为563 m Ah·g~(-1),远高于未经改性乙炔黑S/AB复合正极的放电比容量(406. 9 m Ah·g~(-1))。 相似文献
9.
10.
11.
《材料导报》2020,(1)
近年来,随着可穿戴和便携式产品的快速发展,对柔性电子设备的需求日益增加。柔性电池作为其关键部件,得到了越来越多的研究和关注,开发具有高能量密度的柔性电池,对柔性电子设备的未来发展意义重大。锂硫电池具有较高的理论容量和能量密度,且成本低廉,是未来储能领域发展的重要前沿方向。因此,开发高性能的柔性锂硫电池更能满足未来柔性可穿戴电子器件的需求。但是,传统锂硫电池很难实现较高的柔韧性,因为其电极材料多为刚性材料,不易或不能弯曲;电解液为液态,弯曲过程中,容易发生泄漏;电池结构多为传统物理组装,材料界面结合较差。电池弯曲变形后,将丧失原有性能,或发生性能的快速衰退。鉴于此,适用于柔性锂硫电池的电极材料、固态电解质的开发及电池结构设计创新成为国内外学者研究的热点。目前,柔性电极主要采用碳纳米管、石墨烯、碳布、碳纸等碳基材料或高分子材料,在此基础上的改性材料也被广泛应用。这些材料不仅可满足设备对于机械柔性的要求,同时其多孔及大比表面积等性质有助于离子快速的迁移及界面阻抗的降低等,提高了电池整体性能。固态电解质则多采用凝胶电解质、聚合物固态电解质及无机固态电解质,其化学稳定性优良,安全性高,具有较好的柔性和可塑性。同时,根据拓扑原理,可以设计新的电池结构,如纸张叠层型、线缆型、可编织型等,降低形变过程中电池内部结构的应力变化,以满足电池的柔性要求。本文从电极材料、固态电解质及电池结构设计三方面阐述了锂硫电池柔性化研究的相关成果,分析探讨了面临的问题及未来发展方向。 相似文献
12.
随着化石能源的日渐枯竭、能源危机和环境问题的日益突出,开发环境友好的二次电池能源体系迫在眉睫。锂硫电池作为一种新型的储能电池,其理论比容量高达1 675 mAh/g,质量密度可达2 600 Wh/kg,且原材料来源广、成本低等优点,使得其有望代替锂离子电池成为下一代理想的能源电池。近年来,可穿戴电子设备、智能纺织品的出现,对储能电池提出了更高的要求—柔性,因此开发柔性锂硫电池已经成为研究热点。作为锂硫电池的重要组成部分,柔性正极材料的研究和制备对柔性锂硫电池系统的开发至关重要。从锂硫电池柔性正极基体材料入手,对碳材料、导电聚合物材料和新兴的MOF材料等3个方面进行了分类总结,详细阐述了各自制备方法及对柔性正极性能影响。碳材料高的导电性和多孔结构设计、导电聚合物和MOF材料对多硫化物优异的化学吸附作用,均有助于抑制多硫化物的"穿梭效应",提升柔性锂硫电池的长循环电化学稳定性能。最后分析了现有锂硫电池柔性正极材料存在的缺陷与问题,对未来发展方向做出了展望。这将为开发新型的锂硫电池用柔性正极材料提供指导,同时为其它二次电池柔性正极材料开发过程中的共性问题提供实验和理论依据。 相似文献
13.
14.
15.
采用乙炔黑、土状石墨、Cabot Vulcan XC-72炭黑、Cabot Bp2000超级导电炭黑作为硫载体制备了一系列含硫复合材料。通过X射线粉末晶体衍射(XRD)、扫描电子显微镜(SEM)、比表面积分析(BET)等分析测试手段对材料的物理性能进行表征,利用电池测试系统对材料的电化学性能进行了测试。结果表明基体材料表面结构、孔径分布及比表面积等因素都对复合材料的电化学性能造成影响,综合性能最好的基体材料为BP2000超级导电炭黑,其初始放电比容量高达1385.1mAh/g,在室温下经过30次循环之后电池放电比容量仍保持在1080.2mAh/g,容量保持率高达78%。 相似文献
16.
综述了锂硫电池硫正极材料的研究现状。针对锂硫电池目前存在的问题,展望了其发展趋势,并指出硫/有序多孔碳纳米复合材料对提升锂硫电池性能有重要研究价值;同时形成三维空间传导网络的导电添加剂和具有良好粘接性、导电性及电化学稳定性的粘结剂对锂硫电池性能提升也具有重要作用。 相似文献
17.
18.
19.
碳质材料在锂硫电池中的应用研究进展 总被引:1,自引:0,他引:1
随着石墨负极的成功商用,锂离子电池在智能手机、笔记本电脑等便携式电子设备中已得到广泛的应用。经过20多年的发展,现有基于嵌锂化合物正极的锂离子电池已接近其理论容量,但仍不能满足高速发展的电子工业和新兴的电动汽车等行业的要求,寻找具有更高能量密度的电池系统迫在眉睫。锂硫电池系统具有极高的理论能量密度,在多种储能系统中是最具潜力的一种二次电池。但是锂硫电池中也存在硫的电导率极低、多硫化物溶解迁移等问题,使其在走向实用化的过程中遇到许多困难。纳米碳质材料在新型锂硫电池的开发过程中处于重要地位,通过纳米炭的引入,可以获得导电复合正极材料,控制多硫化物的穿梭,从而有望实现正极硫材料的高效利用。综述了基于纳米炭-硫复合正极材料,尤其是碳纳米管、石墨烯、多孔炭以及其杂化物等材料复合的电极,分析其结构与锂硫电池性能的关系,并展望锂硫电池的发展方向。 相似文献
20.
《材料导报》2020,(8)
通过香蒲绒的热解和KOH活化制备香蒲活性炭。香蒲活性炭的BET比表面积和孔容积分别为1 913. 7 m~2/g和0. 893 cm~3/g,主要为孔径约2 nm的微、介孔。当其用于锂硫电池正极时,碳基质的微介孔可以高度分散和负载非导电性硫,并有效持硫、抑制多硫化物的扩散;同时孔壁可以较快地进行电子输运。因此硫/香蒲活性炭复合材料具有较好的循环性能和倍率容量,0. 12C下首次放电容量可达1 150. 1 m Ah/g,100次循环后比容量为663. 3 m Ah/g。不同倍率测试表明,复合电极均具有较好的循环稳定性,1C下可逆容量约600 m Ah/g。 相似文献