首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atmospheric aerosols play a central role in climate and atmospheric chemistry. Organic matter frequently composes aerosol major fraction over continental areas. Reactions of natural volatile organic compounds, with atmospheric oxidants, are a key formation pathway of fine particles. The gas and particle atmospheric concentration of organic compounds directly emitted from conifer leaf epicuticular wax and of those formed through the photooxidation of alpha- and beta-pinene were simultaneously collected and measured in a conifer forest by using elaborated sampling and GC/ MS techniques. The saturation concentrations of acidic and carbonyl photooxidation products were estimated, by taking into consideration primary gas- and particle-phase organic species. Primary organic aerosol components represented an important fraction of the atmospheric gas-phase organic content Consequently, saturation concentrations of photooxidation products have been lowered facilitating new particle formation between molecules of photooxidation products and semi-volatile organic compounds. From the measured concentrations of the above-mentioned compounds, saturation concentrations (Csat,i) of alpha- and beta-pinene photooxidation products were calculated for nonideal conditions using a previously developed absorptive model. The results of these calculations indicated that primarily emitted organic species and ambient temperature play a crucial role in secondary organic aerosol formation.  相似文献   

2.
Coarse aerosols (particle diameter (D(p)) > 2 μm) produced in coastal surf zones carry chemical and microbial content to shore, forming a connection between oceanic, atmospheric, and terrestrial systems that is potentially relevant to coastal ecology and human health. In this context, the effects of tidal height, wind speed, and fog on coastal coarse aerosols and microbial content were quantified on the southern coast of Maine, USA. Aerosols at this site displayed clear marine influence and had high concentrations of ecologically relevant nutrients. Coarse aerosol concentrations significantly increased with tidal height (i.e., decreasing distance from waterline), onshore wind speed, and fog presence. As onshore wind speeds rose above 3 m s(-1), the mean half-deposition distance of coarse aerosols increased to an observed maximum of 47.6 ± 10.9 m from the water's edge at wind speeds from 5.5-8 m s(-1). Tidal height and fog presence did not significantly influence total microbial aerosol concentrations but did have a significant effect on culturable microbial aerosol fallout. At low wind speeds, culturable microbial aerosols falling out near-shore decreased by half at a distance of only 1.7 ± 0.4 m from the water's edge, indicating that these microbes may be associated with large coarse aerosols with rapid settling rates.  相似文献   

3.
Proton-transfer-reaction mass spectrometry (PTR-MS) is a useful tool in ambient trace gas analysis, especially for the analysis of oxygenated volatile organic compounds (OVOC). Many OVOCs are produced during photooxidation of volatile organic compounds and contribute to both the gas phase and secondary organic aerosols (SOA). The inlet system of the PTR-MS instrument was modified to allow also for the measurement of the particulate phase of an aerosol with a high time resolution. The new inlet consists mainly of a denuder to strip off the gas phase, and a heater (120/150 degrees C) to vaporize the aerosol particles. This inlet system was tested with pinonic acid particles generated with a nebulizer and SOA particles formed during the photooxidation of 1,3,5-trimethylbenzene and alpha-pinene with NO(x) in a smog chamber. The performance of this new technique is discussed and the partitioning coefficients for the oxidation products are estimated.  相似文献   

4.
The trends in secondary organic aerosol at a remote location are studied using atmospheric fine particulate matter samples collected at Seney National Wildlife Refuge (NWR) in northern Michigan. Detailed analysis of particle-phase organic compounds revealed very low concentrations of primary anthropogenic emissions and relatively high levels of organic di-, tri-, and tetracarboxylic acids thought to be indicators of secondary organic aerosols. Seasonal changes in these organic compounds were tracked by analyzing composites of monthly average samples. The concentration of aromatic and aliphatic dicarboxylic acids peak in July and taper off in the fall, which coincides with fine particle organic carbon concentration. In contrast, a chemical mass balance model used to quantify primary sources of particulate matter shows higher contributions from primary emissions in the winter. Complementing the monthly average concentrations, event-based composites of high volume samples were used to track the different species of secondary organic aerosol at the Seney NWR location. The distribution of aliphatic diacids and the aromatic di- and triacids varied with different atmospheric conditions, which suggests different precursor gases for these secondary organic aerosol components. The aliphatic diacid concentrations track with ambient concentrations of particle-phase pinonic acid. In addition, back-trajectories for the eight event-based composites are compared to the organic acid distributions and are linked to the distribution of organic acids present in the composites.  相似文献   

5.
Multiphase oxidation of trace organic constituents inside of complex atmospheric particles is not well understood. In this study, organic aerosol formed from flash-vaporized residual grease from meat cooking was exposed to atmospherically relevant ozone concentrations in a smog chamber for 4-6 h. Changes in particle composition were measured to determine reaction rates for important molecular markers used for source apportionment analysis (oleic acid, palmitoleic acid, and cholesterol). Results are also presented for palmitic and stearic acids and likely reaction products. To quantify oxidation rates over a range of atmospheric conditions, separate experiments were conducted at low and high relative humidity and using particles mixed with and without secondary organic aerosol. Although particle composition, relative humidity, and secondary organic aerosol all influence the reaction rates, the unsaturated compounds were rapidly oxidized in every experiment. At typical summertime conditions, palmitoleic acid, oleic acid and cholesterol are estimated to have a chemical lifetime of about one day. The experimentally determined reaction rates are used in conjunction with the chemical mass balance model to investigate the effects of aging on source apportionment estimates. The results highlight that assumptions regarding the photochemical stability of molecular markers can lead to substantial biases in predictions of receptor models.  相似文献   

6.
Secondary organic aerosol: a comparison between foggy and nonfoggy days   总被引:1,自引:0,他引:1  
Carbonaceous species, meteorological parameters, trace gases, and fogwater chemistry were measured during winter in the Indian city of Kanpur to study secondary organic aerosol (SOA) during foggy and clear (nonfoggy) days. Enhanced SOA production was observed during fog episodes. It is hypothesized that aqueous phase chemistry in fog drops is responsible for increasing SOA production. SOA concentrations on foggy days exceeded those on clear days at all times of day; peak foggy day SOA concentrations were observed in the evening vs peak clear day SOA concentrations which occurred in the afternoon. Changes in biomass burning emissions on foggy days were examined because of their potential to confound estimates of SOA production based on analysis of organic to elemental carbon (OC/EC) ratios. No evidence of biomass burning influence on SOA during foggy days was found. Enhanced oxidation of SO(2) to sulfate during foggy days was observed, possibly causing the regional aerosol to become more acidic. No evidence was found in this study, either, for effects of temperature or relative humidity on SOA production. In addition to SOA production, fogs can also play an important role in cleaning the atmosphere of carbonaceous aerosols. Preferential scavenging of water-soluble organic carbon (WSOC) by fog droplets was observed. OC was found to be enriched in smaller droplets, limiting the rate of OC deposition by droplet sedimentation. Lower EC concentrations were observed on foggy days, despite greater stagnation and lower mixing heights, suggesting fog scavenging and removal of EC was active as well.  相似文献   

7.
In light of current interest in better understanding the environmental impact of atmospheric particulate matter (PM), a new strategy has been employed to screen the relative toxicities of ambient and source aerosols. Short-term and acute aquatic bioassays using Ceriodaphnia dubia and a green alga (Selenastrum capricornutum) as test organisms have been in use for many years in the regulation of wastewater effluents. These tests have been employed in the present study to compare the toxicity of water extracts of atmospheric particulate matter and dichloromethane (DCM) extracts that have been transferred to dimethyl sulfoxide and diluted in water. Atmospheric PM was collected at four sites located near the south shore of Lake Michigan and one site in Michigan's Upper Peninsula at discrete events during three seasons. Parallel chemical analyses of the two extracts directly assessed the relation between the chemical composition and the toxicity of the extract. Inductively coupled plasma analysis of the metals in the water extract and gas chromatography-mass spectroscopy of the organics in the DCM extract showed a relationship between high toxicity and high water-soluble copper concentration and high secondary organic aerosol tracers in the extracted aerosol. Although previous fractionation studies have not looked at water-soluble copper, significant toxicity has been measured in the semipolar and polar organic fractions of ambient aerosols and diesel exhaust particles, which are the fractions in which secondary organic aerosol components would be expected. For the water extracts, the summer samples were consistently more toxic than the autumn or spring samples. There was not a seasonal pattern for the toxicity of the DCM extracts; however, spatial differences were apparent. The toxicity end points of select samples from one site qualitatively correlate with the high polycyclic aromatic hydrocarbon concentrations. Additionally, high toxicity in the July DCM extracts from another site may be tied to the presence of the insecticide carbaril. The seasonal and spatial variations captured in the toxicity results in this study tend to qualitatively correlate with trace organic components and metals and not bulk particulate matter composition.  相似文献   

8.
Atmospheric concentrations and gas-particle partitioning of polycyclic aromatic hydrocarbons (PAH) have been determined at three remote mountain areas in Europe. Gas-phase mean concentrations of total PAH (20 individual compounds) were very similar at all sites, ranging from 1.3-2.6 ng m(-3) in the Pyrenees (Spain) to 2.7-3.7 ng m(-3) in the Alps (Austria) and Caledonian mountains (Norway). A seasonal variability was observed, with the highest levels found in winter. The seasonal differences were reflected better in the particle-associated PAH, showing the increase of PAH emissions in the colder months and a temperature dependence of the gas-particle partitioning. Significant geographical differences were also observed for particulate PAH, indicating a greater influence of regional sources than in the gas phase. Partitioning of PAH between gas and particulate phases was well-correlated with the subcooled liquid vapor pressure in all samples, but with slopes significantly steeper than the expected value of -1. These steeper slopes may reflect the occurrence of a nonexchangeable PAH fraction in the aerosols, likely associated to the soot carbon phase. Comparison of absorption to organic matter and soot carbon using the octanol-air (Koa) and soot-air (Ksa) partitioning coefficients shows that, despite uncertainties on estimated organic matter and soot carbon contents in the sampled aerosols, Koa underpredicts aerosol PAH concentrations by a factor of 0.6-2 log units. In contrast, predicted and measured high mountain aerosol PAH differ by 0.2-0.6 log units when Ksa is considered. The results point to soot carbon as the main transport medium for the long-range distribution of aerosol-associated PAH.  相似文献   

9.
Secondary organic aerosol (SOA) formation from the photooxidation of five polycyclic aromatic hydrocarbons (PAHs, naphthalene, 1- and 2-methylnaphthalene, acenaphthylene, and acenaphthene) was investigated in a 9-m(3) chamber in the presence of nitrogen oxides and the absence of seed aerosols. Aerosol size distributions and PAH decay were monitored by a scanning mobility particle sizer and a gas chromatograph with a flame ionization detector. Over a wide range of conditions, the aerosol yields for the investigated PAHs were observed to be in the range of 2-22%. The observed evolution of aerosol and PAH decay indicate that light and oxidant sources influence the time required to form aerosol and the required threshold reacted concentration of the PAHs. The SOA yields also were related to this induction period and the hydroxyl radical concentrations, particularly for smaller aerosol loadings (<~6 μg m(-3)). Estimation of SOA production from oxidation of PAHs emitted from mobile sources in Houston shows that PAHs could account for more than 10% of the SOA formed from emissions from mobile sources in this region.  相似文献   

10.
Aeration tanks of wastewater treatment plants (WWTP) are a potential source of atmospheric aerosol particles. Several groups of organic compounds (sterols, polycyclic aromatic hydrocarbons, estrogens) were analyzed in aerosol particles sampled at a municipal WWTP, and the particle size distribution was measured directly with optical particle counters. Aerosol emissions from an activated treatment tank equipped with fine bubble diffusers were low; however, at the preaeration tank equipped with coarse bubble diffusers, sterol concentrations up to 14 ng m(-3) were measured. Directly next to the tank, sterols were associated mainly to particles with aerodynamic diameter >1.35 microm. The results suggest that coprostanol could be a useful tracer for monitoring the emission of aerosol particles from WWTPs. Moreover, wastewater treatment could contribute substantially to the atmospheric concentrations of cholesterol and 24-ethylcholesterol. Aeration tanks with fine bubble diffusers are no major source of atmospheric aerosol particles, whereas coarse bubbling devices seem to emit considerable amounts of aerosol particles.  相似文献   

11.
Over 90 organic species have been determined in fine aerosols (PM2.5) collected during the summer and winter in Nanjing, a typical mega-city in China, using gas chromatography-mass spectrometry. The organic compounds detected were apportioned to four emission sources (i.e., plant emission, fossil fuel combustion, biomass burning, and soil resuspension) and secondary oxidation products. The most abundant classes of compounds are fatty acids, followed by sugars, dicarboxylic acids excluding oxalic and malonic acids, and n-alkanes, while alcohols, polyols/polyacids and lignin/sterols are less abundant. Total amounts of the seven classes of compounds were on average 938 ng m(-3) in the summer and 1301 ng m(-3) in the winter, respectively, contributing 0.26-1.96% of particle mass (PM2.5). In the summer, n-alkanes were heavily enhanced by vegetation emissions with a maximum carbon number (Cmax) at C29, whereas they were dominated by emissions from fossil fuels combustion with a Cmax at C22/ C23 in the winter. Concentrations of unsaturated fatty acids were lower in the summer than in the winter, being consistent with enhanced photooxidation of unsaturated fatty acids in the summer. Concentrations of dicarboxylic acids for the summer aerosols were much higher in the daytime than in the nighttime, indicating increased photochemical production in the daytime. In the summer, plant emissions were the most significant source of organic aerosols, contributing more than 33% of total compound mass (TCM), followed by fossil fuel combustion or secondary oxidation. In contrast, fossil fuel combustion was the dominant source of winter organic aerosols, contributing more than 51% of TCM, followed by plant emissions and secondary oxidation products. The quantitative results on sugars and lignin pyrolysis products further suggested that biomass burning and soil resuspension are also significant sources of urban organic aerosols.  相似文献   

12.
Sorption to urban aerosols is a key process in determining the transport and fate of organic pollutants in the atmosphere. The sorption properties of two urban aerosol samples have been determined using aerosol/air partition coefficients measured for a large set of diverse organic vapors. The dominant sorption process could be identified for both samples with two complementary methods: (a) by applying poly-parameter linear free energy relationships (LFERs) to the data sets, and (b) by evaluating the specific surface area, the elemental carbon (EC) content, and the organic matter (OM) content of the aerosols in combination with various sorbent-air partition coefficients from the literature. This revealed that sorption to the two urban aerosols was dominated by absorption into OM and that the diverse data set could be evaluated with an absorption model. The data further revealed that neither EC nor OM was fully available for sorption. The latter leads to the hypothesis that aerosol OM in urban samples has characteristics comparable to those of glassy polymers.  相似文献   

13.
The presence of saccharides is being reported for aerosols taken in urban, rural, and marine locales. The commonly found primary saccharides are alpha- and beta-glucose, alpha- and beta-fructose, sucrose, and mycose with lesser amounts of other monosaccharides. Saccharide polyols are also found in some airsheds and consist mainly of sorbitol, xylitol, mannitol, erythritol, and glycerol. In temperate climate areas these compounds increase from negligible concentrations in winter aerosols (usually dominated by levoglucosan and related anhydrosaccharides from biomass burning) to a maximum in late spring-summer, followed by a decrease to winter. The composition of the saccharide mixtures suggests soil and associated microbiota as the source. Saccharide analyses of soils confirmed these compositions. Therefore, we propose resuspension of soil (also unpaved road dust) from agricultural activities as a major component of aerosol particles and the saccharides are the source specific tracers. In addition, the saccharides as well as the anhydrosaccharide derivatives from biomass burning are completely water soluble and thus contribute significantly to the total water-soluble mass of aerosols.  相似文献   

14.
Biomass burning is an important source of smoke aerosol particles, which contain water-soluble inorganic and organic species, and thus have a great potential of affecting cloud formation, precipitation, and climate on global and regional scales. In this study, we have developed a new chromatographic method for the determination of levoglucosan (a specific tracer for biomass burning particles), related polyhydroxy compounds, and 2-methylerythritol (recently identified as isoprene oxidation product in fine aerosols in the Amazon) in smoke and in rainwater samples. The new method is based on water extraction and utilizes ion-exclusion high-performance liquid chromatography (IEC-HPLC) separation and spectroscopic detection at 194 nm. The new method allows the analysis of wet samples, such as rainwater samples. In addition, aliquots of the same extracts can be used for further analyses, such as ion chromatography. The overall method uncertainty for sample analysis is 15%. The method was applied to the analysis of high-volume and size-segregated smoke samples and to rainwater samples, all collected during and following the deforestation fires season in Rondonia, Brazil. From the analysis of size-segregated samples, it is evident that levoglucosan is a primary vegetation combustion product, emitted mostly in the 0.175-1 microm size bins. Levoglucosan concentrations decrease below the detection limit atthe end of the deforestation fires period, implying that it is not present in significant amounts in background Amazon forest aerosols. The ratio of daytime levoglucosan concentration to particulate matter (PM) concentration was about half the nighttime ratio. This observation is rationalized by the prevalence of flaming combustion during day as opposed to smoldering combustion during night. This work broadens the speciation possibilities  相似文献   

15.
It is currently assumed that benzene contributes only negligibly to secondary organic aerosol formation in the atmosphere. Our understanding of the capacity of benzene to generate secondary aerosols is based on the work of Izumi and Fukuyama (Atmos. Environ. 1990, 24A, 1433) in which two photosmog experiments with benzene in the presence of NOx were performed and no particle formation was observed. In contrast to the observations of Izumi and Fukuyama, experiments performed in the EUPHORE large outdoor simulation chamber have clearly shown aerosol formation during the photochemical oxidation of benzene in various NOx regimes. The maximum aerosol yields of 8-25% on a mass basis are comparable to yields obtained during the photochemical oxidation of other aromatic compounds under similar conditions. In addition, a density of 1.35+/-0.04 g/cm3 for the secondary organic aerosol from the benzene photochemical oxidation in the presence of NOx has been determined through the simultaneous measurement of aerosol volume and aerosol mass using two independent measurement techniques. Comparing the results in the present work with previous findings underscores the strong influence that the NOx content in the system has on aerosol formation during the photochemical oxidation of aromatic hydrocarbons and the importance of performing experiments with NOx concentrations relevant to the atmosphere.  相似文献   

16.
Throughout the winter months, the village of Roveredo, Switzerland, frequently experiences strong temperature inversions that contribute to elevated levels of particulate matter. Wood is used as fuel for 75% of the domestic heating installations in Roveredo, which makes it a suitable location to study wood burning emissions in the atmosphere in winter. An Aerodyne quadrupole aerosol mass spectrometer (Q-AMS) was used to characterize the composition of the submicrometer, non-refractory aerosol particles at this location during two field campaigns in March and December 2005. Wood burning was found to be a major source of aerosols at this location in winter. Organics dominated the composition of the aerosols from this source, contributing up to 85% of the total AMS measured mass during the afternoon and evening hours. Carbonaceous particle analysis showed that organic carbon composed up to 86% of the total carbon mass collected at evening times. Results from 14C isotope determination revealed that up to 94% of the organic mass came from non-fossil sources, which can be attributed mostlyto wood burning. The unique combination of off-line 14C isotope analysis and on-line aerosol mass spectrometry was used to identify periods during which organic mass was mainly from wood burning emissions and allowed for the identification of the AMS spectral signature of this source in the atmosphere. The identified ambient signature of wood burning was found to be very similar to the mass spectral signature obtained during the burning of chestnut wood samples in a small stove and also to the spectrum of levoglucosan. Particles from wood burning appeared to be composed of highly oxygenated organic compounds, and mass fragments 60, 73, and 137 have been suggested as marker fragments for wood burning aerosols. Mass fragment 44, which is used as a marker for oxygenated organic aerosols (OOA), contributed about 5% to the total organic signal from primary wood burning sources. The ratio of the organic mass emitted from wood burning to m/z 60 in Roveredo is 36. This ratio may be used to provide an estimate of the organic aerosol mass emitted from wood burning in other locations.  相似文献   

17.
Lower to middle (0.5-3.0 km altitude) tropospheric aerosols (PM2.5) collected by aircraft over inland and east coastal China were, for the first time, characterized for organic molecular compositions to understand anthropogenic, natural, and photochemical contribution to the air quality. n-Alkanes, fatty acids, sugars, polyacids are detected as major compound classes, whereas lignin and resin products, sterols, polycyclic aromatic hydrocarbons, and phthalic acids are minor species. Average concentrations of all the identified compounds excluding malic acid correspond to 40-50% of those reported on the ground sites. Relative abundances of secondary organic aerosol (SOA) components such as malic acid are much higher in the aircraft samples, suggesting an enhanced photochemical production over China. Organic carbon (OC) concentrations in summer (average, 24.3 microg m(-3)) were equivalent to those reported on the ground sites. Higher OC/EC (elemental carbon) ratios in the summer aircraft samples also support a significant production of SOA over China. High loadings of organic aerosols in the Chinese troposphere may be responsible to an intercontinental transport of the pollutants and potential impact on the regional and global climate changes.  相似文献   

18.
The interaction of trace organic contaminants with bulk organic matter has implications for the transport and behavior of organic trace contaminants within the aquatic environment as well as water and wastewater treatment processes. Partition coefficients (K(OM)) of the steroidal trace organic contaminant estradiol were quantified for environmentally relevant concentrations of bulk organic matter (12.5 mg C/L) using a full mass balance form of solid-phase microextraction (SPME). The results indicated that the method is successful and can be used at environmental concentrations. Estradiol had the greatest affinity for bulk organic matter that contained phenolic and benzoic acid ester groups, namely tannic acid, compared to organics containing predominately carboxylic functional groups. The solution chemistry (pH) was found to influence the interaction, as estradiol had a lower affinity for negatively charged and hydrophilic bulk organic matter. The partition coefficients determined using SPMEwere consistentwith partition coefficients derived using solubility enhancement and fluorescence quenching measurements, confirming that SPME is a powerful technique to quantify the affinity of estradiol for low concentrations of bulk organic matter and trace contaminants. Further, this novel method can be applied to a range of trace contaminants.  相似文献   

19.
The coastal region off Macao is a known depositional zone for persistent organic pollutants (POPs) in the Pearl River Delta and Estuary of southern China and an important gateway for the regional contributions of contamination to the globe. This paper presents a comprehensive assessment of the input sources and transport pathways of polycyclic aromatic hydrocarbons (PAHs) found in the coastal sediments of Macao, based on measurements of 48 2-7 ring PAHs and 7 sulfur/oxygenated (S/O) PAH derivatives in 45 sediment, 13 street dust, and 68 aerosol samples. Total sediment PAHs concentrations ranged from 294 to 12741 ng/g, categorized as moderate contamination compared to other regions of Asia and the world. In addition, the PAH compounds appeared to be bound more strongly to aromatics-rich soot particles than to natural organic matter, implying a prevailing atmospheric transport route for PAHs to Macao's coast. Compositional analysis and principal component analysis (PCA) suggested that different classes of PAHs in the coastal sediments of Macao may have been derived from different input sources via various transport pathways. For example, alkylated and S/O PAHs were likely derived from fossil fuel leakage and transported to sediments by both aerosols particles and street runoff. High-molecular-weight parent PAHs were predominantly originated from automobile exhausts and distributed by direct and indirect atmospheric deposition. Low-molecular-weight parent PAHs, on the other hand, may have stemmed from lower temperature combustion and fossil fuel (such as diesel) spillage from ships and boats and were transported to sediments by river runoff or direct discharge as well as by air-water exchange.  相似文献   

20.
Recent studies suggest that trace metals emitted by internal combustion engines are derived mainly from combustion of lubrication oil. This hypothesis was examined by investigation of the formation of particulate matter emitted from an internal combustion engine in the absence of fuel-derived soot. Emissions from a modified CAT 3304 diesel engine fueled with hydrogen gas were characterized. The role of organic carbon and metals from lubrication oil on particle formation was investigated under selected engine conditions. The engine produced exhaust aerosol with log normal-size distributions and particle concentrations between 10(5) and 10(7) cm(-3) with geometric mean diameters from 18 to 31 nm. The particles contained organic carbon, little or no elemental carbon, and a much larger percentage of metals than particles from diesel engines. The maximum total carbon emission rate was estimated at 1.08 g h(-1), which is much lower than the emission rate of the original diesel engine. There was also evidence that less volatile elements, such as iron, self-nucleated to form nanoparticles, some of which survive the coagulation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号