首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The response of a low speed compressor on rotating inlet distortion   总被引:1,自引:0,他引:1  
In multi-spool engines,the downstream compressor experiences a rotating inlet distortion if rotating stall occursin upstream compressor,which may induce the instability of the whole compressor.In this paper,the compressordynamic behavior is the major focus.The experiment was carried out on a single-stage low-speed axial-flowcompressor.A rotating distortion generator equipped with different distortion sector(s)was designed to producedifferent rotating inlet distortion clockwise or counterclockwise with up to 100% of the compressor design speed.The distortion sector can be installed single or in some combination such as four sectors together.Three types ofdistortion sector/combination are used in the research work,which are single 30 degree sector,four 30 degree sec-tors and single 120 degree sector.It is found that the total pressure loss caused by rotating sector(s)increaseswhen the distortion speed rises.For co-rotating distortions,all the three types of inlet distortion exhibited a peakin stall margin degradation when the distortion speed corresponded to roughly 50% of rotor speed.Thetwo-dimensional numerical simulations of the compressor flow field clearly show the propagation of the distur-bances trigged by the distortion sector(s).  相似文献   

2.
<正>It is well known that tip leakage flow has a strong effect on the compressor performance and stability. This paper reports on a numerical investigation of detailed flow structures in an isolated transonic compressor rotor-NASA Rotor 37 at near stall and stalled conditions aimed at improving understanding of changes in 3D tip leakage flow structures with rotating stall inception.Steady and unsteady 3D Navier-Stokes analyses were conducted to investigate flow structures in the same rotor.For steady analysis,the predicted results agree well with the experimental data for the estimation of compressor rotor global performance.For unsteady flow analysis, the unsteady flow nature caused by the breakdown of the tip leakage vortex in blade tip region in the transonic compressor rotor at near stall condition has been captured with a single blade passage.On the other hand, the time-accurate unsteady computations of multi-blade passage at near stall condition indicate that the unsteady breakdown of the tip leakage vortex triggered the short length-scale-spike type rotating stall inception at blade tip region.It was the forward spillage of the tip leakage flow at blade leading edge resulting in the spike stall inception. As the mass flow ratio is decreased,the rotating stall cell was further developed in the blade passage.  相似文献   

3.
The unsteady flow structure between rotor blade-to-blade passages in a three-stage axial flow compressor is experimentally investigated by detailed measurements of unsteady performance characteristics,casing wall pressure fluctuations and their wavelet analyses.The main feature of the test compressor is a capacity tank facility connected in series to the compressor outlet in order to supply compression and/or expansion waves from downstream of the compressor.Research attention is focused on the post-stall characteristics of the surge and rotating stall which occur simultaneously.The influence of the compressor operating point on the unsteady performance curve shows that the surge cycle changes irregularly depending on the steady-state resistance characteristics,and the results of the wavelet analyses of the wall pressure fluctuations suggest that the surge cycle may selectively be determined by the rotating stall cell structure within the rotor cascade.  相似文献   

4.
The unsteady inner flow structure of a single-stage axial flow compressor under the coexisting conditions of surge and rotating stall was experimentally investigated via detailed measurements of the unsteady characteristics and the internal flow velocity fluctuations. The main relevant feature of the tested compressor is a shock tube with a capacity tank connected in series to the compressor outlet through slits and a concentric duplex pipe: surge and rotating stall can both be generated by connecting the shock tube. Research attention is focused on the unsteady behavior of a rotating stall during the surge cycle. The size of the rotating stall cell during the recovery process of an irregular surge cycle was experimentally determined by the circumferential flow velocity fluctuations ahead of the rotor blade. The results suggested that the size of the rotating stall cell at the switching point of the performance curve between large and small cycles is considered to be the key parameter in determining the following surge cycle. In addition, the surge cycle is largely influenced by the unsteady behavior of the rotating stall cell.  相似文献   

5.
Unsteady behaviors as well as unsteady cascade flow fields of a single-stage axial flow compressor were experimentally investigated by detail measurements of unsteady performance characteristics and casing wall pressure and internal flow velocity fluctuations. The main feature of the test compressor is a capacity tank connected directly to the compressor outlet in series through slits and a concentric duplex pipe, and also jet nozzles in order to inject compressed air toward the rotor tip region. Research attention is focused on the post-stall characteristics of surge and rotating stall which occur simultaneously. When the compressor was connected to the capacity tank, surge was generated with rotating stall in accordance with the capacitance increment of whole compressor system. The surge behavior changed irregularly with throttling valve installed behind the compressor, and several types of surge cycles were observed. In addition, the surge cycle changed by jet injection to the rotor tip region. The results suggested that the blockages of the cascade flow which were generated by a stall cell play an important role in deciding the surge behaviors.  相似文献   

6.
This paper reports a numerical study on the process from normal operating conditions to rotating stall in a cen-trifugal compressor with vaned diffuser.The purpose is to better understand the flow characteristics near stallpoint under the interactions between centrifugal impeller and vaned diffuser.Numerical results show that undercertain conditions just preceding stall point the tip leakage vortex begins to fluctuate at roughly half of the bladepassing frequency.This phenomenon is similar to rotating instability in axial compressors.With the flow rate re-duced further the impeller stalls and five stall cells propagating at a frequency of 85 percent of impeller rotationspeed are found.  相似文献   

7.
The present paper gives the experimental results obtained in a centrifugal compressor stage designed and built by SAFRAN Helicopter Engines.The compressor is composed of inlet guide vanes,a backswept splittered unshrouded impeller,a splittered vaned radial diffuser and axial outlet guide vanes.Previous numerical simulations revealed a particular S-shape pressure rise characteristic at partial rotation speed and predicted an alternate flow pattern in the vaned radial diffuser at low mass flow rate.This alternate flow pattern involves two adjacent vane passages.One passage exhibits very low momentum and a low pressure recovery,whereas the adjacent passage has very high momentum in the passage inlet and diffuses efficiently.Experimental measurements confirm the S-shape of the pressure rise characteristic even if the stability limit experimentally occurs at higher mass flow than numerically predicted.At low mass flow the alternate stall pattern is confirmed thanks to the data obtained by high-frequency pressure sensors.As the compressor is throttled the path to instability has been registered and a first scenario of the surge inception is given.The compressor first experiences a steady alternate stall in the diffuser.As the mass flow decreases,the alternate stall amplifies and triggers the mild surge in the vaned diffuser.An unsteady behavior results from the interaction of the alternate stall and the mild surge.Finally,when the pressure gradient becomes too strong,the alternate stall blows away and the compressor enters into deep surge.  相似文献   

8.
Evolution of unsteady flow near rotor tip during stall inception   总被引:1,自引:0,他引:1  
Previously the features of circumferential propagation of self-induced tip leakage flow unsteadiness for a low speed isolated axial compressor rotor in the authors’ laboratory were discovered and investigated via numerical simulation,which only occurs below a critical stable flow point that is close to but not yet at the stall limit.Further in this paper,the detailed investigation on evolution of tip leakage flow during the throttling process into spike rotating stall was conducted by adopting the valve-throttling model.During this process,the development of the circumferential propagation of tip leakage flow unsteadiness was especially focused on.According to the unsteady characteristics of pressure signals,the evolvement of compressor flow field can be classified into four stages.As compressor throttled,the oscillation frequency of self-induced unsteady tip leakage flow decreased gradually,and thus resulted in the decrease of its circumferential propagation speed.The circumferential propagation of self-induced tip leakage flow unsteadiness is closely related with rotating instability.When the forward spillage of tip leakage flow at the leading edge occurred,the spike type rotating stall was initiated.Its flow struc-tures were given in the paper.  相似文献   

9.
Numerical investigation on the self-induced unsteadiness of tip leakage flow (TLF) for an axial low-speed com- pressor with smooth wall and six single grooved casings are presented. A ten-passage numerical scheme is used to solve the unsteady Reynolds averaged Navier-Stokes (URANS) equations. It is found that the single grooves at various axial locations could have a large impact on the self-induced unsteadiness and the stall margin improve- ment (SMI) of compressor. The trend of SMI with groove center location demonstrates that the groove located near the mid of blade tip chord generates the best SMI. The worst groove is located about 20% Cax after the blade leading edge. The root-mean-squre of static pressure (RMSP) contours at 99.5% span and fast Fourier transform for the static pressure traces recorded in the tip clearance region for each casing are analyzed. The results demon- strate that the single groove location not only affects the oscillating strength but also the frequency of the un- steady tip leakage flow. At the near-stall point of smooth casing, the self-induced unsteadiness of TLF is enhanced most by the best grooved casing for SMI. While, the self-induced unsteadiness disappears when the worst groove for SMI is added. The characteristic frequency of TLF is about 0.55 blade passing frequency (BPF) with smooth casing. The frequency components become complicated as the single groove moves from the leading edge to the trailing edge of the blade.  相似文献   

10.
In order to clarify the natures of a rotating stall cell, the experimental investigation was carried out in a high specific-speed diagonal flow fan. The pressure field on the casing wall and the velocity fields at the rotor inlet and outlet were measured under rotating stall condition with a fast response pressure transducer and a single slant hot-wire probe, respectively. The data were processed using the "Double Phase-Locked Averaging (DPLA)" technique, which enabled to obtain the unsteady flow field with a rotating stall cell in the relative co-ordinate system fixed to the rotor. As a result, the structure and behavior of the rotating stall cell in a high specific-speed diagonal flow fan were shown.  相似文献   

11.
For convenience of both measurement and adjusting the clearance size and incidence, the current research is mainly conducted by experiments on an axial compressor linear cascade. The characteristics and the condition under which the unsteadiness of tip leakage flow would occur were investigated by dynamic measuring in different clearances, inlet velocities and incidences. From the experiment it is found that increasing tip clearance size or reducing rotor tip incidence can affect the strength of the tip clearance flow. Then the experimental results also indicate the tip leakage shows instability in certain conditions, and the frequency of unsteadiness is great influenced by inflow angle. The condition of occurrence of tip leakage flow unsteadiness is when the leakage flow is strong enough to reach the pressure side of the adjacent blade. The main cause of tip leakage flow unsteadiness is the tip blade loading.  相似文献   

12.
This paper reports on numerical investigations aimed at understanding the influence of
circumferential casing grooves on the tip leakage flow and its resulting vortical structures.The results
and conclusions are based on steady state 3D numerical simulations of the well-known transonic axial
compressor NASA Rotor 37 near stall operating conditions.The calculations carried out on the casing
treatment configuration reveal an important modification of the vortex topology at the rotor tip
clearance.Circumferential grooves limit the expansion of the tip leakage vortex in the direction
perpendicular to the blade chord,but generate a set of secondary tip leakage vortices due to the
interaction with the leakage mass flow.Finally,a deeper investigation of the tip leakage flow is
proposed.  相似文献   

13.
A numerical study is conducted to investigate the influence of inlet flow condition on tip leakage flow (TLF) and stall margin in a transonic axial rotor.A commercial software package FLUENT,is used in the simulation.The rotor investigated in this paper is ND_TAC rotor,which is the rotor of one-stage transonic compressor in the University of Notre Dame.Three varied inlet flow conditions are simulated.The inlet boundary condition with hub distortion provides higher axial velocity for the incoming flow near tip region than that for the clean inflow,while the incoming main flow possesses lower axial velocity near the tip region at tip distortion inlet boundary condition.Among the total pressure ratio curves for the three inlet flow conditions,it is found that the hub dis-torted inlet boundary condition improves the stall margin,while the tip distorted inlet boundary condition dete-riorates compressor stability.The axial location of interface between tip leakage flow (TLF) and incoming main flow (MF) in the tip gap and the axial momentum ratio of TLF to MF are further examined.It is demonstrated that the axial momentum balance is the mechanism for interface movement.The hub distorted inflow could de-crease the axial momentum ratio,suppress the movement of the interface between TLF and MF towards blade leading edge plane and thus enhance compressor stability.  相似文献   

14.
Activities by various authors on aerodynamics and control dynamics of rotating stall in axial compressor are first traced. Then, a process of stall cell evolution in a subsonic stage is discussed based on a 2-D CFD. A few numbers of vortices grow ahead of the rotor accumulating vorticity ejected from lightly stalled blades, and eventually organize a cell of circumferentially aligned huge vortices, which merge and recess repeatedly during the rotation. Such stall disturbance is intensified on trailing side of a circumferential inlet distortion and decays on the leading side. Considering these features, a new algorithm for stall warning is developed based on a correlation between pressure waveforms at each passing of a fixed blade. A remarkable change in the correlation level at near-stall provides a warning signal prior to the stall onset with sufficiently large time margin. This scheme is applied to achieve rotating stall prevention by actuating flaps installed on the hub. The last issue is on characteristics of forward swept blade which has much increased throttle margin with decreased tip loss. A 3-D computation shows that a secondary vortex generated in suction surface mid span interacts to reduce the tip leakage vortex that initiates the stall.  相似文献   

15.
An experiment was carried out in a low-speed large-scale axial-compressor. Dynamic pressure signals were measured and analyzed with a wavelet transform. At all stable operating condition, a shaft order perturbation was observed from the dynamic pressure signals and wavelet power spectrums. By measuring the tip clearance, blade pitches and blade thickness distributions, a rotor asymmetry was identified in this compressor, which is strongly linked to the shaft order perturbation. Modal wave appears at the near-stall operating point. The propagation speed of the modal wave is about 20% rotating speed. At the peak of the modal wave, the intensity of the shaft-order-perturbation increases obviously, while it decays very fast at the trough of modal wave. By throttling the compressor, modal stall occurs in several seconds and only one stall-cell was detected. The stall cell grows smoothly out of the modal wave and its propagation speed is increased to 30% rotor speed. In several revolutions before stall, the intensity of the modal wave is increasing and a shaft order perturbation produced by modal-wave grows into stall inception which indicate stall onset but not trigger stall.  相似文献   

16.
An experimental investigation on the unsteady tip flow field of a transonic compressor rotor has been performed.The casing-mounted high frequency response pressure transducers were arranged along both the blade chord and the blade pitch.The chord-wise ones were used to indicate both the ensemble averaged and time varying flow structure of the tip region of the rotor at different operating points under 95% design speed and 60% design speed.The pitch-wise circumferential transducers were mainly used to analyze the unsteadiness frequency of the tip leakage flow in the rotor frame at the near stall condition.The contours of casing wall pressure show that there were two clear low pressure regions in blade passages,one along the chord direction,caused by the leakage flow and the other along the tangential direction,maybe caused by the forward swept leading edge.Both low pressure regions were originated from the leading edge and formed a scissor-like flow pattern.At 95% design speed condition,the shock wave interacted with the low pressure region and made the flow field unsteady.With the mass flow reduced,the two low pressure regions gradually contracted to the leading edge and then a spike disturbance emerged.  相似文献   

17.
Numerical investigations of the Darmstadt transonic single stage compressor (DTC), in the Rotor1-Stator1 configuration, aimed at advancing the understanding of the effect of different rotor tip gaps and transition modelling on the blade surfaces are presented. Steady three dimensional Reynolds Averaged Navier Stokes (RANS) simulations were performed to obtain the flow fields for the different configurations at different operating conditions using the RANS-Solver TRACE. The stage geometry and the multi-block structured grid were generated by G3DMESH and a grid sensitivity analysis was conducted. For the clearance gap region, a fully gridded special H-grid was chosen. Comparisons were made between the flow characteristic at design speed, representative for a transonic flow regime, and at 65% speed, representative for a subsonic flow regime. The computations were used to analyse the flow phenomena through the tip clearance region for the different configurations and their impact on the performance of the compressor stage.  相似文献   

18.
The structure and behavior of rotating stall cell were experimentally clarified in a diagonal flow fan. The specific-speed of the fan was 1140 (r/min, m3/min, m), and the total pressure-rise coefficient at design flow-rate was 0.345. The static pressure on outer casing wall and the total pressure at rotor inlet and outlet were measured using a high response pressure transducer. The measured data were processed by the use of DPLA technique, and the structure and behavior of rotating stall cell were obtained. As a result, the stall cell extent for circumferential and spanwise direction and the pressure distributions inside stall cell were clarified. The details of stall cell propagation were also shown.  相似文献   

19.
The near casing flow fields inside the rotor passage of a 1.5 stage axial compressor with different blade-loading levels and tip gap sizes were measured by using stereoscopic particle image velocimetry (SPIV). Based on a carefully defined blockage extracting method, the variations of blockage parameter inside the blade passage were analyzed. It was found that the variation of blockage parameter appeared as a non-monotonic behavior inside the blade passage in most cases. This non-monotonic behavior became much more remarkable as the blade loading increases or mass flow rate decreases.The variations of the blockage parameter inside the blade passage had close relation to the evolutionary procedures of the tip leakage vortex (TLV). The destabilization of the TLV caused a rapid increasing of the blockage parameter. After the TLV lost the features of a concentrated streamwise vortex, the blockage parameter usually got a peak value. And then, because of the intense turbulent mixing between the TLV low momentum flow and its surrounding flows, the flow deficit inside the TLV recovered.  相似文献   

20.
电厂轴流风机失速分析及处理方法   总被引:1,自引:0,他引:1  
系统分析了电厂轴流风机失速现象产生的原理及影响因素。轴流风机产生失速的根本原因在于冲角过大而引起的叶片尾部脱流。而影响冲角大小的主要因素有流量大小,气流方向以及叶片安装角度等。在此基础上,结合轴流风机性能曲线,提出了轴流风机失速的监测方法和防治措施,对于降低电厂轴流风机失速现象对于机组产生的不良影响起到一定的指导作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号