首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Presents a new DRAM array architecture for scaled DRAMs. This scheme suppresses the stress bias for memory cell transistors and enables memory cell transistor scaling. In this scheme, the data "1" and data "0" are written to the memory cell in different timing. First, for all selected cells, data "1" is written by boosting wordline (WL) voltage. Second, after pulling down WL voltage to a lowered value, data "0" is written only for data "0" cells. This scheme reduces stress bias for the cell transistor to half of that of the conventional operation. The time loss for data "1" write is eliminated by parallel processing of data "1" write and sense amplifier activation. This scheme realizes fast cycle time of 50 ns. By adopting the proposed scheme, the gate-oxide thickness of the cell transistor is reduced from 5.5 to 3 nm, and the memory cell size is reduced to 87% in 0.13-μm DRAM generation. Moreover, the application of the oxide-stress relaxation technique to all row-path circuits as well as the proposed scheme enables high-performance DRAM with only a thin gate-oxide transistor  相似文献   

2.
An array architecture with countermeasures for the smaller signal charge caused by scaling down is proposed. Based on a new access model, the combination of a hierarchical data bus configuration and multipurpose register (MPR) provides high-speed array access. The MPR also includes practical array-embedded error checking and correcting (ECC) with little area penalty and no access overhead in the page mode. The array architecture is applied to a scaled-down 16-Mb DRAM and has achieved high performance  相似文献   

3.
A 29-ns (RAS access time), 64-Mb DRAM with hierarchical array architecture has been developed. For consistent high yields and high speed, a CMOS segment driver circuit is used as a hierarchical word line scheme. To achieve high speed, precharge signal (PC) drivers for equalizing the bit lines pairs, and shared sense amplifier signal (SHR) drivers are distributed in the array. To enhance sense amplifiers speed in low array voltage, an over driven sense amplifier is adopted. A hierarchical I/O scheme with semidirect sensing switch is introduced for high speed data transfer in the I/O paths. By combining these proposed circuit techniques and 0.25-μm CMOS process technologies with phase-shift optical lithography, an experimental 64-Mb DRAM has been designed and fabricated. The memory cell size is 0.71×1.20 μm 2, and the chip size is 15.91×9.06 mm2. A typical access time under 3.3 V power supply voltage is 29 ns  相似文献   

4.
In this paper we examine the usefulness of a simple memory array architecture to several image processing tasks. This architecture, called theAccess Constrained Memory Array Architecture (ACMAA) has a linear array of processors which concurrently access distinct rows or columns of an array of memory modules. We have developed several parallel image processing algorithms for this architecture. All the algorithms presented in this paper achieve a linear speed-up over the corresponding fast sequential algorithms. This was made possible by exploiting the efficient local as well as global communication capabilities of the ACMAA.  相似文献   

5.
This paper is an overview of the high-speed DRAM architecture developments. We discuss developments on density growth, interface technology, memory-core architecture, and DRAM+ASIC technology. We can find the developments of density as 2× growth instead of 4× by each generation. Interface technologies will have a tendency to use the terminated bus structure for higher data rate. Memory-core architecture developments are the trials for actual bandwidth improvements. DRAM+ASIC technologies seem to require universal interface solutions. We tried to show that no single solution is able to cover the wide diversity of future system requirements  相似文献   

6.
The noise-generating mechanisms inherent in the open-bitline DRAM array using the 6F2 (F: feature size) memory cells and techniques for reducing the noise are described. The sources of differential noise coupled to the paired bitlines laid out in two arrays are the p-well, cell plate, and the group of nonselected wordlines. It was found, by simulation and by experiment with a 0.13-μm 256-Mb test chip, that the level of noise is dramatically reduced by using a low-impedance array with careful layout featuring low-resistivity materials, tight bridging between pairs of adjacent arrays, and a small array, achieving a comparable level of noise to that seen in the twisted and folded-bitline array. On basis of these results, it turns out that the open-bitline array has a strong chance of revival in the multigigabit generation, as long as these noise reduction techniques are applied  相似文献   

7.
A unique word-line voltage control method for the 64-Mb DRAM and beyond is proposed. It realizes a constant lifetime for a thin gate oxide. This method controls word-line voltage and compensates reliability degradation in the thin gate oxide for cell-transfer transistors. It keeps the time-dependent dielectric breakdown (TDDB) lifetime constant under any conditions of gate oxide thickness fluctuation, temperature variation, and supply voltage variation. This method was successfully implemented in a 64-Mb DRAM to realize high reliability. This chip achieved a 105 times reliability improvement and a 0.3~1.8-V larger word-line voltage margin to write ONE data into the cell  相似文献   

8.
This paper presents the high-performance DRAM array and logic architecture for a sub-1.2-V embedded silicon-on-insulator (SOI) DRAM. The degradation of the transistor performance caused by boosted wordline voltage level is distinctly apparent in the low voltage range. In our proposed stressless SOI DRAM array, the applied electric field to the gate oxide of the memory-cell transistor can he relaxed. The crucial problem that the gate oxide of the embedded-DRAM process must be thicker than that of the logic process can be solved. As a result, the performance degradation of the logic transistor can be avoided without forming the gate oxides of the memory-cell array and the logic circuits individually. In addition, the data retention characteristics can be improved. Secondly, we propose the body-bias-controlled SOI-circuit architecture which enhances the performance of the logic circuit at sub-1.2-V power supply voltage, Experimental results verify that the proposed circuit architecture has the potential to reduce the gate-delay time up to 30% compared to the conventional one. This proposed architecture could provide high performance in the low-voltage embedded SOI DRAM  相似文献   

9.
A three-dimensional architecture for a photosensing array has been developed. This silicon based architecture consists of a 10 x 10 array of photosensors with 80 microns diameter, through chip interconnects to the back side of a 500 microns thick silicon wafer. Each photosensor consists of a 300 x 300 microns pn-junction photodiode. The following processes were used to create this photosensing architecture: 1) thermomigration of aluminum pads through an n-type silicon wafer; 2) creation of pn-junction photosensors on one side of the wafer; and 3) creation of aluminum pad ohmic contacts to the thermomigrated, through chip interconnects and the substrate on the back side of the wafer. The electrical and optical characteristics of the three-dimensional architecture indicates that it should be well suited as a photosensing framework around which a "silicon retina" could be built.  相似文献   

10.
A memory array architecture and row decoding scheme for a 3 V only DINOR (divided bit line NOR) flash memory has been designed. A new sector organization realizes one word line driver per two word lines, which is conformable to tight word line pitch. A hierarchical negative voltage switching row decoder and a compact source line driver have been developed for 1 K byte sector erase without increasing the chip size. A bit-by-bit programming control and a low threshold voltage detection circuit provide a high speed random access time at low Vcc and a narrow program threshold voltage distribution. A 4 Mb DINOR flash memory test device was fabricated from 0.5 μm, double-layer metal, triple polysilicon, triple well CMOS process. The cell measures 1.8×1.6 μm2 and the chip measures 5.8×5.0 mm 2. The divided bit line structure realizes a small NOR type memory cell  相似文献   

11.
A new high-speed charge transfer sense amplifier scheme is proposed for 0.5 V DRAM array applications. The combination of both the cross-coupled structure and the boosting capacitance used in the proposed sense amplifier leads to a maximum voltage difference between sense nodes. Based on post-layout simulations, the charge transfer speed and the voltage difference after charge transfer are improved 40.7% and 59.29%, respectively, over the prior art circuits. The power-delay product is then enhanced 38.26%. Besides, both high voltage pre-charge levels and high voltage control signals are not required in this proposed circuit as compared with prior arts.  相似文献   

12.
Hong  S. 《Electronics letters》2007,43(19):1017-1018
A DRAM architecture capable of providing dual-port interface is presented. The architecture utilises a novel global bitline scheme to obtain a very wide data bandwidth not possible using traditional DRAM architectures. Furthermore, the area penalty is minimised by using a conventional one-transistor one-capacitor cell coupled with special sensing units that have 84.6% more transistor count. The architecture allows simultaneous read and write access using a conventional two-metal DRAM fabrication process.  相似文献   

13.
Antenna array architecture   总被引:2,自引:0,他引:2  
An abbreviated view of the topics included in modern array architecture is presented. The broad subject of architecture includes all the electromagnetic, thermal and mechanical aspects that need to be addressed by the array design team. The emphasis is on the interaction between the selection of an array aperture organization, corporate feeds, devices and elements, and a discussion of EHF monolithic array architecture is included as an example  相似文献   

14.
An efficient low-latency array architecture is presented for telescopic-search-based block-matching motion estimation. It consists of a novel ring-like systolic array and a comparing tree. The new architecture achieves higher processor utilisation, delivers a higher throughput rate, and requires minimal memory bandwidth  相似文献   

15.
This paper describes key techniques for a 1.6-GB/s high data-rate 1-Gb synchronous DRAM (SDRAM). Its high data transfer rate and large memory capacity are targeted to the advanced unified memory system in which a single DRAM (array) is used as both the main memory and the three-dimensional (3-D) graphics frame memory in a time sharing fashion. The 200-MHz high-speed operation is achieved by the unique hierarchical square-shaped memory block (SSMB) layout and the novel distributed bank (D-BANK) architecture. A 0.29 μm2 cell and 581.8 mm2 small die area are achieved using 0.15-μm CMOS technology. The ×61 chip uses 196-pin BGA type chip-scale-package (CSP). Implementation of a built-in self-test (BIST) circuit with a margin test capability is also described  相似文献   

16.
Dynamic random access memory has been a viable semiconductor storage medium for more than three decades. Surprisingly, it has only been in the past three years that attempts to combine DRAM with meaningful amounts of Boolean logic, on the same substrate, have occurred. Although much fanfare has accompanied this technological breakthrough, commonly referred to as embedded DRAM, few system designers appreciate the complexity of this new technology, let alone its applicability to other circuit forms. This article provides background information about embedded DRAM technology, provide suggestions on how structural and electrical elements of the embedded DRAM era might be reused in other circuits, and review circuit theory that is directly attributed to the DRAM technology progression  相似文献   

17.
A 512-Mb one-time-programmable memory is described, which uses a transistorless two-terminal memory cell containing an antifuse and a diode. Cells are fabricated in polycrystalline silicon, stacked vertically in eight layers above a 0.25-/spl mu/m CMOS substrate. One-time programming is performed by applying a high voltage across the cell terminals, which ruptures the antifuse and permanently encodes a logic 0. Unruptured antifuses encode a logic 1. Cells are arranged in 8-Mb tiles, 1 K rows by 1 K columns by 8 bits high. The die contains 72 such tiles: 64 tiles for data and eight tiles for error-correcting code bits. Wordline and bitline decoders, bias circuits, and sense amplifiers are built in the CMOS substrate directly beneath the memory tiles, improving die efficiency. The device supports a generic standard NAND flash interface and operates from a single 3.3-V supply.  相似文献   

18.
Solovan  M. M.  Brus  V. V.  Mostovyi  A. I.  Maryanchuk  P. D.  Orletskyi  I. G.  Kovaliuk  T. T.  Abashin  S. L. 《Semiconductors》2017,51(4):542-548

Photosensitive nanostructured heterojunctions n-TiN/p-Si were fabricated by means of titanium nitride thin films deposition (n-type conductivity) by the DC reactive magnetron sputtering onto nano structured single crystal substrates of p-type Si (100). The temperature dependencies of the height of the potential barrier and series resistance of the n-TiN/p-Si heterojunctions were investigated. The dominant current transport mechanisms through the heterojunctions under investigation were determined at forward and reverse bias. The heterojunctions under investigation generate open-circuit voltage V oc = 0.8 V, short-circuit current I sc = 3.72 mA/cm2 and fill factor FF = 0.5 under illumination of 100 mW/cm2.

  相似文献   

19.
Flash memories entered the nonvolatile memory scenario only a few years ago, and now these kind of memories are battling to substitute either EEPROM or EPROM. In fact, their peculiarities are becoming quite interesting in present day applications.In system updating, low power consumption, embedded algorithm for program and erase, high density, low cost packages are some of the items which are making the Flash grow in the nonvolatile memory market share.Some words must be spent in explaining what the market is asking of Flash, which are the main applications for these memories, and how their architecture is arranged.The Flash memory cell behaviour will be described, then the fundamental operations (read, program and erase) are explained and some words are used to introduce the redundancy and device testability concept.  相似文献   

20.
The authors describe a block-oriented random-access memory (BORAM) based on a series-connected cell concept and a quasi-folded data-line architecture. The series-connected cell concept allows a nearly half-sized DRAM cell even when using the same fabrication process as for conventional DRAMs. The low-noise quasi-folded data-line architecture allows the data-line capacitance to be one eighth the conventional value at the minimum, or the number of cells per amplifier to be 64 times the conventional number at the maximum. In addition, this architecture provides a more relaxed layout for the READ/WRITE circuits. The operation of four series-connected cells is observed successfully through a test device which includes a voltage-to-current conversion circuit, a current-mirror amplifier, and a 0.76-μm2 crown-shaped stack-capacitor (STC) cell  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号