首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Freshwater wetlands are highly diverse, spatially heterogeneous, and seasonally dynamic systems that present unique challenges to remote sensing. Maximum likelihood and support vector machine-supervised classification were compared to map wetland plant species distributions in a deltaic environment using high-resolution WorldView-2 satellite imagery. The benefits of the sensor’s new coastal blue, yellow, and red-edge bands were tested for mapping coastal vegetation and the eight-band results were compared to classifications performed using band combinations and spatial resolutions characteristic of other available high-resolution satellite sensors. Unlike previous studies, this study found that support vector machine classification did not provide significantly different results from maximum likelihood classification. The maximum likelihood classifier provided the highest overall classification accuracy, at 75%, with user’s and producer’s accuracies for individual species ranging from 0% to 100%. Overall, maximum likelihood classification of WorldView-2 imagery provided satisfactory results for species distribution mapping within this freshwater delta system and compared favourably to results of previous studies using hyperspectral imagery, but at much lower acquisition cost and greater ease of processing. The red-edge and coastal blue bands appear to contribute the most to improved vegetation mapping capability over high-resolution satellite sensors that employ only four spectral bands.  相似文献   

2.
In tropical rainforests, the sustainability of selective logging is closely linked to the extent of collateral stand damage. The capacity to measure the extent of such damage is essential for calculating carbon emissions due to forest degradation under the Reducing Emissions from Deforestation and Forest Degradation (REDD+) process. The use of remote sensing to detect canopy gaps in tropical rainforests is an attractive alternative to ground surveys, which are laborious and imprecise. In French Guiana, the detection of logging-related gaps using very high spatial resolution optical satellite images produced by the Système Pour l'Observation de la Terre (SPOT) 5 sensor is carried out by Office National des Forêts (ONF) (French National Forestry Agency). Gaps are detected using a segmentation method based on computer-assisted photointerpretation. Detection has been automated to improve and accelerate the process. We developed an automatic method, which involves estimating segmentation thresholds using a statistical approach. The principle of the method presented in this article is to model the forest's spectral signature by using a Gaussian distribution and calculate a divergence between that theoretical signature and the image histogram in order to detect gaps that constitute a reduction of forest cover. The segmentation threshold between gap and forest is thus no longer defined in the original radiometric area but as a discrepancy between theoretical distribution and histogram. Computing the divergence to define the threshold made it possible to efficiently automate the detection of all gaps and skid trails with a surface area greater than 100 m2. The proportion of misclassified points measured during field surveys is 12%, which is a high level of precision. The proportion of misclassified points obtained is 12%. This tool could be used to assess the quality of logging operations or biomass loss in other areas where the forest is undergoing deterioration while still remaining predominant in the landscape.  相似文献   

3.
Estimating forest canopy fuel parameters using LIDAR data   总被引:1,自引:0,他引:1  
Fire researchers and resource managers are dependent upon accurate, spatially-explicit forest structure information to support the application of forest fire behavior models. In particular, reliable estimates of several critical forest canopy structure metrics, including canopy bulk density, canopy height, canopy fuel weight, and canopy base height, are required to accurately map the spatial distribution of canopy fuels and model fire behavior over the landscape. The use of airborne laser scanning (LIDAR), a high-resolution active remote sensing technology, provides for accurate and efficient measurement of three-dimensional forest structure over extensive areas. In this study, regression analysis was used to develop predictive models relating a variety of LIDAR-based metrics to the canopy fuel parameters estimated from inventory data collected at plots established within stands of varying condition within Capitol State Forest, in western Washington State. Strong relationships between LIDAR-derived metrics and field-based fuel estimates were found for all parameters [sqrt(crown fuel weight): R2=0.86; ln(crown bulk density): R2=0.84; canopy base height: R2=0.77; canopy height: R2=0.98]. A cross-validation procedure was used to assess the reliability of these models. LIDAR-based fuel prediction models can be used to develop maps of critical canopy fuel parameters over forest areas in the Pacific Northwest.  相似文献   

4.
Determining forest canopy characteristics using airborne laser data   总被引:3,自引:0,他引:3  
A pulsed laser system was flown over a forested area in Pennsylvania which exhibited a wide range of canopy closure conditions. The lasing system acts as the ultraviolet light equivalent of radar, sensing not only the distance to the top of the forest canopy, but also the range to the forest floor. The data were analyzed to determine which components of the laser data could explain the variability in crown closure along the flight transect. Results indicated that canopy closure was most strongly related to the penetration capability of the laser pulse. Pulses were attenuated more quickly in a dense canopy. Hence the inability to find a strong ground return in the laser data after initially sensing the top of the canopy connoted dense canopy cover. Photogrammetrically acquired tree heights were compared to laser estimates; average heights differed by less than 1 m. The results indicated that the laser system may be used to remotely sense the vertical forest canopy profile. Elements of this profile are linearly related to crown closure and may be used to assess tree height.  相似文献   

5.
The spatial properties of gaps have an important influence upon the regeneration dynamics and species composition of forests. However, such properties can be difficult to quantify over large spatial areas using field measurements. This research considers how we conceptualize and define forest canopy gaps from a remote sensing point of view and highlights the inadequacies of passive optical remotely sensed data for delineating gaps. The study employs the analytical functions of a geographical information system to extract gap spatial characteristics from imagery acquired by an active remote sensing device, an airborne light detection and ranging instrument (LiDAR). These techniques were applied to an area of semi-natural broadleaved deciduous forest, in order to map gap size, shape complexity, vegetation height diversity and gap connectivity. A vegetation cover map derived from imagery from an airborne multispectral scanner was used in combination with the LiDAR data to characterize the dominant vegetation types within gaps. Although the quantification of these gap characteristics alone is insufficient to provide conclusive evidence on specific processes, the paper demonstrates how such information can be indicative of the general status of a forest and can provide new perspectives and possibilities or further ecological research and forest monitoring activities.  相似文献   

6.
Estimates of mean tree size and cover for each forest stand from an invertible forest canopy reflectance model are part of a new forest vegetation mapping system. Image segmentation defines stands which are sorted into general growth forms using per-pixel image classifications. Ecological models based on terrain relations predict species associations for the conifer, hardwood, and brush growth forms. The combination of the model-based estimates of tree size and cover with species associations yields general-purpose vegetation maps useful for a variety of land management needs. Results of timber inventories in the Tahoe and Stanislaus National Forests indicate the vegetation maps form a useful basis for stratification. Patterns in timber volumes for the strata reveal that the cover estimates are more reliable than the tree size estimates. A map accuracy assessment of the Stanislaus National Forest shows high overall map accuracy and also illustrates the problems in estimating tree size.  相似文献   

7.
The coastal floods induced by hurricane storm surge are frequent, costly, and deadly hazards. Accurately and quickly estimating the spatial extent of floods is highly important for relief and rescue operations. In this study, we present an approach to estimate the extent of large-scale coastal floods caused by Hurricane Sandy in late October 2012 using passive microwave remote-sensing data. The approach estimates the water fraction from coarse-resolution Advanced Technology Microwave Sounder (ATMS) data through mixed-pixel linear decomposition. Land and water sample regions generated by river density and land-cover data, the relationship of channels 3, 4, and 16, neighbourhood pixel searching, and the difference of ATMS channels 4 and 3 are all comprehensively taken into account to dynamically determine water and land end members. The difference in the water fraction at the basin scale before and after flooding is calculated to reduce the impacts of soil and vegetation and to avoid pixel-to-pixel errors. Based on the water fraction difference, using the physical characteristics of water inundation that always proceed from the lowest to the highest elevation points in a basin, the flood map derived from the coarse-resolution ATMS measurements was extrapolated to a higher spatial resolution of 100 m using topographic information. Together, these steps represent a water fraction and high-resolution flood (WFHF) mapping process. To evaluate the WFHF mapping methodology presented in this study, the corresponding ground observations (storm-tide sites and high-water-mark data) and the Federal Emergency Management Agency 3 m resolution Hurricane Sandy storm surge flooding (SSF) products are used. The results show that 88% of the storm-tide and high-water-mark sites were located within the WFHF-mapped flood area. There was also good agreement between our WFHF and the SSF areas, with an accuracy of 88% and a correlation of 0.94. Overall, the proposed WFHF methodology was able to produce high-quality and high-resolution flood maps over large-scale coastal areas.  相似文献   

8.
In this paper, we present an improved procedure for collecting no or little atmosphere- and snow-contaminated observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The resultant time series of daily MODIS data of a temperate deciduous broadleaf forest (the Bartlett Experimental Forest) in 2004 show strong seasonal dynamics of surface reflectance of green, near infrared and shortwave infrared bands, and clearly delineate leaf phenology and length of plant growing season. We also estimate the fractions of photosynthetically active radiation (PAR) absorbed by vegetation canopy (FAPARcanopy), leaf (FAPARleaf), and chlorophyll (FAPARchl), respectively, using a coupled leaf-canopy radiative transfer model (PROSAIL-2) and daily MODIS data. The Markov Chain Monte Carlo (MCMC) method (the Metropolis algorithm) is used for model inversion, which provides probability distributions of the retrieved variables. A two-step procedure is used to estimate the fractions of absorbed PAR: (1) to retrieve biophysical and biochemical variables from MODIS images using the PROSAIL-2 model; and (2) to calculate the fractions with the estimated model variables from the first step. Inversion and forward simulations of the PROSAIL-2 model are carried out for the temperate deciduous broadleaf forest during day of year (DOY) 184 to 201 in 2005. The reproduced reflectance values from the PROSAIL-2 model agree well with the observed MODIS reflectance for the five spectral bands (green, red, NIR1, NIR2, and SWIR1). The estimated leaf area index, leaf dry matter, leaf chlorophyll content and FAPARcanopy values are close to field measurements at the site. The results also showed significant differences between FAPARcanopy and FAPARchl at the site. Our results show that MODIS imagery provides important information on biophysical and biochemical variables at both leaf and canopy levels.  相似文献   

9.
Sugar maple (Acer Saccharum Marsh.) damage resulting from a severe ice storm was modeled and mapped over eastern Ontario using pre- and post-storm Landsat 5 imagery and environmental data. Visual damage estimates in 104 plots and corresponding reflectance and environmental data were divided into multiple, mutually exclusive training and reference datasets for damage classification evaluation. Damage classification accuracy was compared among four methods: multiple regression, linear discriminant analysis, maximum likelihood, and neural networks. Using the best classifier, various stratification methods were assessed for potential inflationary effects on classification accuracy due to spatial proximity between training and reference data. Of the classifiers that were evaluated, neural networks performed best. Neural networks ‘learn’ training data accurately (94% overall), but classify proximate reference data less accurately (65%), and distant, spatially independent reference data least accurately (55%). Results indicate that, while remotely sensed and environmental data cannot discriminate among many levels of deciduous ice storm damage, they can by considered useful for differentiating areas of low to medium damage from areas of severe damage (69% accuracy). Such classification methods can provide regional damage maps more objectively than point-based visual estimates or aerial sketch mapping and aid in identification of areas of severe damage where management intervention may be advantageous.  相似文献   

10.
Recent advances in spatial and spectral resolution of satellite imagery as well as in processing techniques are opening new possibilities of fine-scale vegetation analysis with interesting applications in natural resource management. Here we present the main results of a study carried out in Sierra Morena, Cordoba (southern Spain), aimed at assessing the potential of remote-sensing techniques to discriminate and map individual wild pear trees (Pyrus bourgaeana) in Mediterranean open woodland dominated by Quercus ilex. We used high spatial resolution (2.4 m multispectral/0.6 m panchromatic) QuickBird satellite imagery obtained during the summer of 2008. Given the size and features of wild pear tree crowns, we applied an atmospheric correction method, Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercube (FLAASH), and six different fusion ‘pan-sharpening’ methods (wavelet ‘à trous’ weighted transform, colour normalized (CN), Gram–Schmidt (GS), hue–saturation–intensity (HSI) colour transformation, multidirection–multiresolution (MDMR), and principal component (PC)), to determine which procedure provides the best results. Finally, we assessed the potential of supervised classification techniques (maximum likelihood) to discriminate and map individual wild pear trees scattered over the Mediterranean open woodland.  相似文献   

11.
This article presents a spatial contrast-enhanced image object-based change detection approach (SICA) to identify changed areas using shape differences between bi-temporal high-resolution satellite images. Each image was segmented and intrinsic image objects were extracted from their hierarchic candidates by the proposed image object detection approach (IODA). Then, the dominant image object (DIO) presentation was labelled from the results of optimal segmentation. Comparing the form and the distribution of bi-temporal DIOs by using the raster overlay function, ground objects were recognized as being spatially changed where the corresponding image objects were detected as merged or split into geometric shapes. The result of typical spectrum-based change detection between two images was enhanced by using changed spatial information of image objects. The result showed that the change detection accuracies of the pixels with both attribute and shape changes were improved from 84% to 94% for the strong attribute pixel, and from 36% to 81% for the weak attribute pixel in study area. The proposed approach worked well on high-resolution satellite coastal images.  相似文献   

12.
A spatially explicit dataset of aboveground live forest biomass was made from ground measured inventory plots for the conterminous U.S., Alaska and Puerto Rico. The plot data are from the USDA Forest Service Forest Inventory and Analysis (FIA) program. To scale these plot data to maps, we developed models relating field-measured response variables to plot attributes serving as the predictor variables. The plot attributes came from intersecting plot coordinates with geospatial datasets. Consequently, these models serve as mapping models. The geospatial predictor variables included Moderate Resolution Imaging Spectrometer (MODIS)-derived image composites and percent tree cover; land cover proportions and other data from the National Land Cover Dataset (NLCD); topographic variables; monthly and annual climate parameters; and other ancillary variables. We segmented the mapping models for the U.S. into 65 ecologically similar mapping zones, plus Alaska and Puerto Rico. First, we developed a forest mask by modeling the forest vs. nonforest assignment of field plots as functions of the predictor layers using classification trees in See5©. Secondly, forest biomass models were built within the predicted forest areas using tree-based algorithms in Cubist©. To validate the models, we compared field-measured with model-predicted forest/nonforest classification and biomass from an independent test set, randomly selected from available plot data for each mapping zone. The estimated proportion of correctly classified pixels for the forest mask ranged from 0.79 in Puerto Rico to 0.94 in Alaska. For biomass, model correlation coefficients ranged from a high of 0.73 in the Pacific Northwest, to a low of 0.31 in the Southern region. There was a tendency in all regions for these models to over-predict areas of small biomass and under-predict areas of large biomass, not capturing the full range in variability. Map-based estimates of forest area and forest biomass compared well with traditional plot-based estimates for individual states and for four scales of spatial aggregation. Variable importance analyses revealed that MODIS-derived information could contribute more predictive power than other classes of information when used in isolation. However, the true contribution of each variable is confounded by high correlations. Consequently, excluding any one class of variables resulted in only small effects on overall map accuracy. An estimate of total C pools in live forest biomass of U.S. forests, derived from the nationwide biomass map, also compared well with previously published estimates.  相似文献   

13.
Currently, tree maps are produced from field measurements that are time consuming and expensive. Application of existing techniques based on aerial photography is often hindered by cloud cover. This has initiated research into the segmentation of high resolution airborne interferometric Synthetic Aperture Radar (SAR) data for deriving tree maps. A robust algorithm is constructed to optimally position closed boundaries. The boundary of a tree crown will be best approximated when at all points on the boundary, the z-coordinate image gradient is maximum, and directed inwards orthogonal to the boundary. This property can be expressed as the result of a line integral along the boundary. Boundaries with a large value for the line integral are likely to be tree crowns. This paper focuses on the search procedure and on illustrating how smoothing can be used to prevent the search from becoming trapped in a local optimum. The final crown detection stage is not described in this paper but could be based on the gradient and implemented using the above described value for the line integral. Results of this paper indicate that a Fourier parametrization with only three harmonics (nine parameters) can describe the shape variation in the 2D crown projection in sufficient detail. Current ground datasets are not suitable for obtaining detection statistics such as the percentage of tree crowns detected and the number of false alarms. Better ground datasets will be needed to evaluate algorithm performance for real tree mapping situations.  相似文献   

14.
Remote sensing offers a feasible means to monitor tree species at a regional level where species distribution and composition is affected by the impacts of global change. Furthermore, the temporal resolution of space-borne multispectral sensors offers the ability to combine phenologically important phases for the optimization of tree species classification. In this study, we determined whether multi-seasonal leaf-level spectral data (winter, spring, summer, and autumn) improved the classification of six evergreen tree species in the subtropical forest region of South Africa when compared to a single season, for hyperspectral data, and reflectance data simulated to the WorldView-2 (WV2) and RapidEye (RE) sensors. Classification accuracies of the test data were assessed using a Partial Least Square Random Forest algorithm. The accuracies were compared between single seasons and multi-season classification and across seasons using analysis of variance and post-hoc Tukey Honest Significant Difference tests. The average overall accuracy (OA) of the leaf-level hyperspectral data ranged from a minimum of 90 ± 3.5% in winter to a maximum of 92 ± 2.7% in summer, outperforming the simulated reflectance data for the WV2 and RE sensors with an average OA of between 8 and 10 percentage points (p < 0.02, Bonferroni corrected). The use of data from multiple seasons increased the average OA and decreased the number of species pair confusions for the simulated multispectral classifications. The producer’s and user’s accuracies of the hyperspectral classification were >82% and showed no significant change using multi-season data. Multiple seasons may therefore be beneficial to multispectral sensors with ≤8 bands, yet remains to be tested at canopy level, for other species and climatic regions.  相似文献   

15.
ABSTRACT

The aim of this study was to investigate the capabilities of two date satellite-derived image-based point clouds (IPCs) to estimate forest aboveground biomass (AGB). The data sets used include panchromatic WorldView-2 stereo-imagery with 0.46 m spatial resolution representing 2014 and 2016 and a detailed digital elevation model derived from airborne laser scanning data. Altogether, 332 field sample plots with an area of 256 m2 were used for model development and validation. Predictors describing forest height, density, and variation in height were extracted from the IPC 2014 and 2016 and used in k-nearest neighbour imputation models developed with sample plot data for predicting AGB. AGB predictions for 2014 (AGB2014) were projected to 2016 using growth models (AGBProjected_2016) and combined with the AGB estimates derived from the 2016 data (AGB2016). AGB prediction model developed with 2014 data was also applied to 2016 data (AGB2016_pred2014). Based on our results, the change in the 90th percentile of height derived from the WorldView-2 IPC was able to characterize forest height growth between 2014 and 2016 with an average growth of 0.9 m. Features describing canopy cover and variation in height derived from the IPC were not as consistent. The AGB2016 had a bias of ?7.5% (?10.6 Mg ha?1) and root mean square error (RMSE) of 26.0% (36.7 Mg ha?1) as the respective values for AGBProjected_2016 were 7.0% (9.9 Mg ha?1) and 21.5% (30.8 Mg ha?1). AGB2016_pred2014 had a bias of ?19.6% (?27.7 Mg ha?1) and RMSE of 33.2% (46.9 Mg ha?1). By combining predictions of AGB2016 and AGBProjected_2016 at sample plot level as a weighted average, we were able to decrease the bias notably compared to estimates made on any single date. The lowest bias of ?0.25% (?0.4 Mg ha?1) was obtained when equal weights of 0.5 were given to the AGBProjected_2016 and AGB2016 estimates. Respectively, RMSE of 20.9% (29.5 Mg ha?1) was obtained using equal weights. Thus, we conclude that combination of two date WorldView-2 stereo-imagery improved the reliability of AGB estimates on sample plots where forest growth was the only change between the two dates.  相似文献   

16.
ABSTRACT

The accurate estimation of forest canopy height is important because it leads to increased accuracy in the estimation of biomass, which is used in the study of the global carbon cycle, forest productivity, and climate change. However, there is no well-developed model that accurately estimates canopy height over undulating land. This paper describes the development of a back-propagation (BP) neural network model that estimates forest canopy height more accurately than other types of model. For modeling purposes, the land in the study area was classified as either plain (low relief areas) or hilly (high relief areas). Four different slope partition thresholds (5°, 10°, 15°, and 20°) were tested to determine the most suitable boundary value. ICESat-GLAS data provided by the Geoscience Laser Altimeter System (GLAS) aboard the Ice, Cloud and Land Elevation Satellite (ICESat), field survey data, and digital elevation model (DEM) data were collected and refined, and various parameters, including waveform extent and topographic index, were calculated. A BP neural network model was created to estimate forest canopy height. Two other models were also developed, one using the topographic index and the other using multiple linear regression, for comparison with the BP neural network model. After calibration, the three models were tested to assess the accuracy of the estimates. The results showed that the BP model estimated canopy height more accurately than the other two models. The use of a 10° boundary to partition the topography into low relief areas and high relief areas improved the accuracy of each model; using the 10° slope boundary, the coefficient of correlation r between the estimates given by the BP neural network model and the field-measured data increased from 0.89 to 0.95 and the Root Mean Square Error (RMSE) decreased from 1.01 to 0.73 m.  相似文献   

17.
ABSTRACT

The present study exploits high-resolution hyperspectral imagery acquired by the Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) sensor from the Hutti-Maski gold deposit area, India, to map hydrothermal alteration minerals. The study area is a volcanic-dominated late Archean greenstone belt that hosts major gold mineralization in the Eastern Dharwar Craton of southern India. The study encompasses pre-processing, spectral and spatial image reduction using Minimum Noise Fraction (MNF) and Fast Pixel Purity Index (FPPI), followed by endmember extraction using n-dimensional visualizer and the United States Geological Survey (USGS) mineral spectral library. Image derived endmembers such as goethite, chlorite, chlorite at the mine site (chlorite mixed with mined materials), kaolinite, and muscovite were subsequently used in spectral mapping methods such as Spectral Angle Mapper (SAM), Spectral Information Divergence (SID) and its hybrid, i.e. SIDSAMtan. Spectral similarity matrix of the target and non-target-based method has been proposed to find the possible optimum threshold needed to obtain mineral map using spectral mapping methods. Relative Spectral Discrimination Power (RSDPW) and Confusion Matrix (CM) have been used to evaluate the performance of SAM, SID, and SIDSAMtan. The RSDPW and CM illustrate that the SIDSAMtan benefits from the unique characteristics of SAM and SID to achieve better discrimination capability. The Overall Accuracy (OA) and kappa coefficient (?) of SAM, SID, and SIDSAMtan were computed using 900 random validation points and obtained 90% (OA) and 0.88 (?), 91.4% and 0.90, and 94.4% and 0.93, respectively. Obtained mineral map demonstrates that the northern portion of the area mainly consists of muscovite whereas the southern part is marked by chlorite, goethite, muscovite and kaolinite, indicating the propylitic alteration. Most of these minerals are associated with altered metavolcanic rocks and migmatite.  相似文献   

18.
The extent of oil palm plantations has increased rapidly in Malaysia over the past few decades. To evaluate ecological effects and economic values, it is important to produce an accurate oil palm map for Malaysia. The Phased Array Type L-band Synthetic Aperture Radar (PALSAR) on the Advance Land Observing Satellite (ALOS) is useful in land-cover mapping in tropical regions under all-weather conditions. In this study, PALSAR-2 images from 2015 were used for oil palm mapping with maximum likelihood classifier (MLC)-based supervised classification. The processed PALSAR-2 data were resampled to multiple coarser resolutions (50, 100, 250, 500, and 1000 m), and then used to investigate the effect of speckle in oil palm mapping. Both independent testing samples and inventories from the Malaysia Palm Oil Board (MPOB) were used to evaluate the mapping accuracy. The oil palm mapping result indicates 50–500 m to be a good resolution for either retaining spatial details or reducing speckle noise of PALSAR-2 images. Among which, the best overall mapping accuracies and average oil palm accuracies reached 94.50% and 89.78%, respectively. Moreover, the oil palm area derived from the 100-m resolution map is 6.14 million hectares (Mha), which is the closest to the official MPOB inventories (~8.87% overestimation).  相似文献   

19.
Understory fires in Amazon forests alter forest structure, species composition, and the likelihood of future disturbance. The annual extent of fire-damaged forest in Amazonia remains uncertain due to difficulties in separating burning from other types of forest damage in satellite data. We developed a new approach, the Burn Damage and Recovery (BDR) algorithm, to identify fire-related canopy damages using spatial and spectral information from multi-year time series of satellite data. The BDR approach identifies understory fires in intact and logged Amazon forests based on the reduction and recovery of live canopy cover in the years following fire damages and the size and shape of individual understory burn scars. The BDR algorithm was applied to time series of Landsat (1997-2004) and MODIS (2000-2005) data covering one Landsat scene (path/row 226/068) in southern Amazonia and the results were compared to field observations, image-derived burn scars, and independent data on selective logging and deforestation. Landsat resolution was essential for detection of burn scars < 50 ha, yet these small burns contributed only 12% of all burned forest detected during 1997-2002. MODIS data were suitable for mapping medium (50-500 ha) and large (> 500 ha) burn scars that accounted for the majority of all fire-damaged forests in this study. Therefore, moderate resolution satellite data may be suitable to provide estimates of the extent of fire-damaged Amazon forest at a regional scale. In the study region, Landsat-based understory fire damages in 1999 (1508 km2) were an order of magnitude higher than during the 1997-1998 El Niño event (124 km2 and 39 km2, respectively), suggesting a different link between climate and understory fires than previously reported for other Amazon regions. The results in this study illustrate the potential to address critical questions concerning climate and fire risk in Amazon forests by applying the BDR algorithm over larger areas and longer image time series.  相似文献   

20.
边缘追踪模型与SURF检测结合提取天绘影像机场目标   总被引:1,自引:0,他引:1       下载免费PDF全文
目的 遥感影像提取识别机场目标是遥感领域研究的热点。但是大多研究仅使用被裁剪的影像进行提取识别,由于处理速度等原因很少使用整景高空间分辨率遥感影像提取机场目标。大多数研究是先提取出图像中的直线,根据直线确定机场跑道再确定机场目标,但高分辨率图像提取的直线不仅是机场跑道的,还有可能是高速公路、铁路、大型厂房的外墙、耕地边缘、山脉、地层等,如何区分提取的直线是机场跑道很少被研究。很多研究提取的都是大型机场目标,没有对小型机场进行提取识别,另外如果图像中同时有两个机场应该如何提取也没有被研究。天绘具有数据实时回收,数据全球覆盖等特点,本文将使用高空间分辨率天绘影像(6 000×6 000 像素)提取机场目标。天绘影像地物类型复杂,细节丰富,仅使用一般的空间滤波或边缘探测方法会导致检测结果中有过多的噪声和伪边缘,致使机场目标识别不出来,所以建立了一种以边缘提取追踪模型和SURF(speeded up robust features)检测结合的检测方法和提取流程,达到机场目标识别的目的。方法 边缘提取追踪模型是建立在边缘提取基础上。首先对天绘影像进行滤波处理消除噪声,再对图像进行梯度幅值和法线梯度方向的计算,并利用改进的非极大值抑制方法找到梯度图像中局部变化的最大值,删掉其他值,获得单像素边缘图像,然后对边缘图像进行边缘轮廓线追踪提取出边缘轮廓线,最后使用直线检测和SURF检测方法识别出机场目标。结果 使用本文方法成功地识别了4景天绘卫星图像中的机场目标。借助改进的非极大值抑制和边缘轮廓线追踪提取方法有效地提取了影像中所有地物的边缘,识别出的地物边缘都是清晰的、单像素的边缘,对地物边缘轮廓进行直线提取,并在提取直线的基础上使用SURF检测获得图像中的机场目标。利用天绘卫星图像成功在2景图像中分别提取出一大、一小两个机场,在另外两景图像中分别各提取出一个机场,顺利地实现了用天绘卫星图像提取识别机场目标的过程。结论 本文提出的机场目标提取方法十分有效,该方法不仅适合于天绘卫星遥感数据,还适用于和天绘卫星类似的其他遥感卫星数据。其中对非极大值抑制方法的改进能够提取出更准确的边缘,也能提取出更细微的边缘, 抑制虚假边缘的产生,对提取小型机场有帮助。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号