首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Predicting structural organization and biomass of tropical forest from remote sensing observation constitutes a great challenge. We assessed the potential of Fourier-based textural ordination (FOTO) to estimate mangrove forest biomass from very high resolution (VHR) IKONOS images. The FOTO method computes texture indices of canopy grain by performing a standardized principal component analysis (PCA) on the Fourier spectra obtained for image windows of adequate size. For two distinct study sites in French Guiana, FOTO indices derived from a 1 m panchromatic channel were able to consistently capture the whole gradient of canopy grain observed from the youngest to decaying stages of mangrove development, without requiring any intersite image correction. In addition, a multiple linear regression based on the three main textural indices yielded accurate predictions of mangrove total aboveground biomass. Since FOTO indices did not saturate for high biomass values, predictions were furthermore unbiased, even for levels above 450 t of dry matter per hectare. Maps of canopy texture (with RGB coding) and biomass were then produced over 8000 ha of unexplored, low accessibility mangrove. Applying the FOTO method to the 4 m near-infrared channel yielded acceptable results with some limitations for characterization of juvenile mangrove types. We finally discuss the influence of technical aspects pertaining to VHR images and to FOTO implementation (especially the size of the window used to compute Fourier spectra) and we evoke the interesting prospect of broad regional validity offered by the method to characterize high biomass tropical forest from standardized measures of canopy grain.  相似文献   

2.
The complicated forest stand structure and associated abundant tree species in the Amazon often induce difficulty in estimating aboveground biomass (AGB) using remotely sensed data. This paper explores AGB estimation using Landsat Thematic Mapper (TM) data in the eastern and western Brazilian Amazon, and discusses the impacts of forest stand structure on AGB estimation. Estimating AGB is still a challenging task, especially for the sites with complicated biophysical environments. The TM spectral responses are more suitable for AGB estimation in the sites with relatively simple forest stand structure than for the sites with complicated forest stand structure. Conversely, textures appear more important than spectral responses in AGB estimation in the sites with complicated forest stand structure. A combination of spectral responses and textures improves AGB estimation performance. Different study areas having various biophysical conditions affect AGB estimation performance.  相似文献   

3.
Aboveground biomass (AGB; Mg/ha) is defined in this study as a biomass of growing stock trees greater than 2.5 cm in diameter at breast height (dbh) for stands >5 years and all trees taller than 1.3 m for stands <5 years. Although AGB is an important variable for evaluating ecosystem function and structure across the landscape, such estimates are difficult to generate without high-resolution satellite data. This study bridges the application of remote sensing techniques with various forest management practices in Chequamegon National Forest (CNF), Wisconsin, USA by producing a high-resolution stand age map and a spatially explicit AGB map. We coupled AGB values, calculated from field measurements of tree dbh, with various vegetation indices derived from Landsat 7 ETM+ data through multiple regression analyses to produce an initial biomass map. The initial biomass map was overlaid with a land-cover map to generate a stand age map. Biomass threshold values for each age category (e.g., young, intermediate, and mature) were determined through field observations and frequency analysis of initial biomass estimates by major cover types. We found that AGB estimates for hardwood forests were strongly related to stand age and near-infrared reflectance (r2=0.95) while the AGB for pine forests was strongly related to the corrected normalized difference vegetation index (NDVIc; r2=0.86). Separating hardwoods from pine forests improved the AGB estimates in the area substantially, compared to overall regression (r2=0.82). Our AGB results are comparable to previously reported values in the area. The total amount of AGB in the study area for 2001 was estimated as 3.3 million metric tons (dry weight), 76.5% of which was in hardwood and mixed hardwood/pine forests. AGB ranged from 1 to 358 Mg/ha with an average of 70 and a standard deviation of 54 Mg/ha. The AGB class with the highest percentage (16.1%) was between 81 and 100 Mg/ha. Forests with biomass values >200 Mg/ha accounted for less than 3% of the study area and were usually associated with mature hardwood forests. Estimated AGB was validated using independent field measurements (R2=0.67, p<0.001). The AGB and age maps can be used as baseline information for future landscape level studies such as quantifying the regional carbon budget, accumulating fuel, or monitoring management practices.  相似文献   

4.
5.
This paper presents a method to estimate the aboveground biomass (AGB) through the selection of different estimation methods based on numerous vegetation types (i.e., broadleaf forest, coniferous forest, shrub and grassland) at a regional scale. The proposed method is based on three models, namely, the stepwise regression, an improved back-propagation neural network (Improved BBPNN) model based on the Gaussian error function, and the support vector machine (SVM) technique, Meanwhile, Landsat 8 Operational Land Imager (OLI)/Thermal Infrared Sensor (TIRS) image data and geo-parameters are employed to select 68 feature variables and optimize 213 data samples. Our results reveal that, the stepwise regression method provides the best AGB estimation performance for broadleaf forests and coniferous forests, while the SVM technique shows the best performance for grasslands and shrubs. Different vegetation types should be selected for additional biomass estimation models that have been proven to enhance the biomass estimation. This study on the AGB not only promotes research on the net primary productivity (NPP), but also plays a key role in global carbon cycle research.  相似文献   

6.
Studies are needed to evaluate the ability of Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) for forest aboveground biomass (AGB) extraction in mountainous areas. In this article, forest biomass was estimated at plot and stand levels, and different biomass grades, respectively. Light detection and ranging (LiDAR) data with about one hit per m2 were first used for forest biomass estimation at the plot level, with R 2 of 0.77. Then the LiDAR-derived biomass, as prior knowledge, was used to investigate the relationship between ALOS PALSAR data and biomass. The results showed that at each biomass level, the range of the back-scatter coefficient in HH and HV polarization (where H and V represent horizontal and vertical polarizations, respectively, and the first of the two letters refers to the transmission polarization and the second to the received polarization) was very large and there was no obvious relationship between the synthetic aperture radar (SAR) back-scatter coefficient and biomass at plot level. At stand level and in different biomass grades, the back-scatter coefficient increased with the increase of forest biomass, and a logarithm equation can be used to describe the relationship. The main reason may be that forest structure is complex at the plot level, while the average value could partly decrease the influence of forest structure at stand level. Meanwhile, terrain radiometric correction (TRC) was investigated and found effective for forest biomass estimation.  相似文献   

7.
In this work, the results of above-ground biomass (AGB) estimates from Landsat Thematic Mapper 5 (TM) images and field data from the fragmented landscape of the upper reaches of the Heihe River Basin (HRB), located in the Qilian Mountains of Gansu province in northwest China, are presented. Estimates of AGB are relevant for sustainable forest management, monitoring global change, and carbon accounting. This is particularly true for the Qilian Mountains, which are a water resource protection zone. We combined forest inventory data from 133 plots with TM images and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) global digital elevation model (GDEM) V2 products (GDEM) in order to analyse the influence of the sun-canopy-sensor plus C (SCS+C) topographic correction on estimations of forest AGB using the stepwise multiple linear regression (SMLR) and k-nearest neighbour (k-NN) methods. For both methods, our results indicated that the SCS+C correction was necessary for getting more reliable forest AGB estimates within this complex terrain. Remotely sensed AGB estimates were validated against forest inventory data using the leave-one-out (LOO) method. An optimized k-NN method was designed by varying both mathematical formulation of the algorithm and remote-sensing data input, which resulted in 3000 different model configurations. Following topographic correction, performance of the optimized k-NN method was compared to that of the regression method. The optimized k-NN method (R2 = 0.59, root mean square error (RMSE) = 24.92 tonnes ha–1) was found to perform much better than the regression method (R2 = 0.42, RMSE = 29.74 tonnes ha–1) for forest AGB retrieval over this montane area. Our results indicated that the optimized k-NN method is capable of operational application to forest AGB estimates in regions where few inventory data are available.  相似文献   

8.

This study presents a technique and potential utilization of JERS-1 Synthetic Aperture Radar (SAR) data for the estimation of Taiga species biomass in the Huvsgul Lake basin, Mongolia. In order to develop algorithms for estimating total stand biomass, shapes of the tree trunks were considered. A least-squares method was used to define tree trunk shape coefficients, which were then used to estimate total stand biomass using ground data. L-band data confirmed the backscattering coefficient to be dependent upon not only the quantity of biomass, but also tree parameters. The relationship between backscattering coefficient and forest stand biomass in slope areas of the study area was obtained.  相似文献   

9.
Forest biomass is a significant indicator for substance accumulation and forest succession, and can provide valuable information for forest management and scientific planning. Accurate estimations of forest biomass at a fine resolution are important for a better understanding of the forest productivity and carbon cycling dynamics. In this study, considering the low efficiency and accuracy of the existing biomass estimation models for remote sensing data, Landsat 8 OLI imagery and field data cooperated with the radial basis function artificial neural network (RBF ANN) approach is used to estimate the forest Above Ground Biomass (AGB) in the Mount Tai area, Shandong Province of East China. The experimental results show that the RBF model produces a relatively accurate biomass estimation compared with multivariate linear regression (MLR), k-Nearest Neighbor (KNN), and backpropagation artificial neural network (BP ANN) models.  相似文献   

10.
Extensive plot studies across Amazonia have demonstrated that there are large regional gradients in forest productivity and that the dynamics of the forests seem to have accelerated substantially in recent decades, with ensuing impacts on forest structure. Most of these sites are, however, one hectare plots nested within a heterogeneous landscape, and a clear need exists to understand the landscape and regional context of these studies. Remote sensing offers the potential to scale up from plot to higher landscape levels but it has proven complex to evaluate forest structure, and therefore biomass patterns in tropical areas, due to saturation, signal noises, and unclear relationships between reflectance values and structural properties, both for optical and radar systems. In this study, we explore the potential of a textural approach to detect landscape and regional variations in the structure of tropical forest canopies, as viewed from high resolution IKONOS satellite imagery. We used lacunarity analysis and a derived variable, the index of translational homogeneity (ITH), as a tool to search for structural and dynamic forest properties within and among different Amazonian landscapes. The main goals of this research were: (1) to examine the sensitivity and robustness of ITH analysis to details of the analysis procedure; (2) to explore the intra- and inter-regional textural properties of a variety of tropical forest canopies [Caxiuanã, Manaus, Sinop, Santarem (Brazil), and Tambopata (Peru)], and (3) to relate textural properties derived from lacunarity to structural properties of the forest canopy, mainly crown size. Our results show how ITH and lacunarity analyses offer insights into the spatial distribution of structural properties of forest canopies, easily differentiating between terra firme forests and swamp forests. The studied forest canopies are self-similar on length-scales of 5–11 m, and show translational invariance on scales above 20 m (central and western Amazonia) and 30 m (eastern Amazonia) For a restricted range of solar elevation angles, the ITH appears to be determined mainly by the mean size of tree crowns, and by the fraction of large (shadow-generating) trees.  相似文献   

11.
Evaluation of forest landscape model (FLM) predictions is indispensable to establish the credibility of predictions. We present a framework that evaluates short- and long-term FLM predictions at site and landscape scales. Site-scale evaluation is conducted through comparing raster cell-level predictions with inventory plot data whereas landscape-scale evaluation is conducted through comparing predictions stratified by extraneous drivers with aggregated values in inventory plots. Long-term predictions are evaluated using empirical data and knowledge. We demonstrate the applicability of the framework using LANDIS PRO FLM. We showed how inventory data were used to initialize the landscape and calibrate model parameters. Evaluation of the short-term LANDIS PRO predictions based on multiple metrics showed good overall performance at site and landscape scales. The predicted long-term stand development patterns were consistent with the established theories of stand dynamics. The predicted long-term forest composition and successional trajectories conformed well to empirical old-growth studies in the region.  相似文献   

12.
In the context of reducing emissions from deforestation and forest degradation (REDD) and the international effort to reduce anthropogenic greenhouse gas emissions, a reliable assessment of aboveground forest biomass is a major requirement. Especially in tropical forests which store huge amounts of carbon, a precise quantification of aboveground biomass is of high relevance for REDD activities. This study investigates the potential of X- and L-band SAR data to estimate aboveground biomass (AGB) in intact and degraded tropical forests in Central Kalimantan, Borneo, Indonesia. Based on forest inventory data, aboveground biomass was first estimated using LiDAR data. These results were then used to calibrate SAR backscatter images and to upscale the biomass estimates across large areas and ecosystems. This upscaling approach not only provided aboveground biomass estimates over the whole biomass range from woody regrowth to mature pristine forest but also revealed a spatial variation due to varying growth condition within specific forest types. Single and combined frequencies, as well as mono- and multi-temporal TerraSAR-X and ALOS PALSAR biomass estimation models were analyzed for the development of accurate biomass estimations. Regarding the single frequency analysis overall ALOS PALSAR backscatter is more sensitive to AGB than TerraSAR-X, especially in the higher biomass range (> 100 t/ha). However, ALOS PALSAR results were less accurate in low biomass ranges due to a higher variance. The multi-temporal L- and X-band combined model achieved the best result and was therefore tested for its temporal and spatial transferability. The achieved accuracy for this model using nearly 400 independent validation points was r² = 0.53 with an RMSE of 79 t/ha. The model is valid up to 307 t/ha with an accuracy requirement of 50 t/ha and up to 614 t/ha with an accuracy requirement of 100 t/ha in flat terrain. The results demonstrate that direct biomass measurements based on the synergistic use of L- and X-band SAR can provide large-scale AGB estimations for tropical forests. In the context of REDD monitoring the results can be used for the assessment of the spatial distribution of the biomass, also indicating trends in high biomass ranges and the characterization of the spatial patterns in different forest types.  相似文献   

13.
Recently, SAR data proved to be useful for the retrieval of forest biomass. However, the effects of terrain slope must be addressed towards the generalization of biomass retrieval for varied forest and environmental conditions. To this aim, we developed experimental and theoretical approaches allowing the study of multi-frequency/multi-polarization forest backscatter of a given forest type, as a function of forest parameters and SAR local incidence angle over the relief. The experimental results showed that the sensitivity of SAR data to biomass was similar to that obtained over a flat terrain, only if the backscatter data were calibrated for slope effects. Moreover, the backscatter must also be corrected for its angular decrease, which can be removed using a simple angular model developed under assumptions of theoretical equations. The highest correlation of corrected backscatter with forest parameters related to aboveground biomass (such as stand age and bole volume) was achieved at L-HV 55° (R 2  相似文献   

14.
During the past decade, there have been significant improvements in remote sensing technologies, which have provided high‐resolution data at shorter time intervals. Considerable effort has been directed towards developing new classification strategies for analysing this imagery, but the use of artificial intelligence‐based analysis techniques has been somewhat limited. The aim of this study was to develop an artificial neural network (ANN)‐based technique for the classification of multispectral aerial images for land use in agricultural and environmental applications. The specific land‐use classes included water, forest, and several types of agricultural fields. Multispectral images at a 1‐m resolution were obtained for the state of Georgia, USA from a Geographic Information Systems (GIS) data clearinghouse. These false‐colour images contained green, red and infrared true‐colour information. Three approaches were used for the preparation of the inputs to the ANN. These included histograms of the pixel intensities, textural parameters extracted from the image, and matrices of the pixels for spatial information. A probabilistic neural network was used. Seven hundred images were used for model development and 175 for independent model evaluation. The overall accuracy for the evaluation data set was 74% for the histogram approach, 71% for the spatial approach and 89% for the textural approach. The evaluation of ANNs based on various combinations of all three approaches did not show an improvement in accuracy. We also found that some approaches could be used selectively for certain classes. For example, the textural approach worked best for forest classes. For future studies, edge detection prior to classification, with more careful selection of each class, should be included for land‐use classification of multispectral images.  相似文献   

15.
The amount and spatial distribution of aboveground forest biomass (AGB) are required inputs to forest carbon budgets and ecosystem productivity models. Satellite remote sensing offers distinct advantages for large area and multi-temporal applications, however, conventional empirical methods for estimating forest canopy structure and AGB can be difficult in areas of high relief and variable terrain. This paper introduces a new method for obtaining AGB from forest structure estimates using a physically-based canopy reflectance (CR) model inversion approach. A geometric-optical CR model was run in multiple forward mode (MFM) using SPOT-5 imagery to derive forest structure and biomass at Kananaskis, Alberta in the Canadian Rocky Mountains. The approach first estimates tree crown dimensions and stem density for satellite image pixels which are then related to tree biomass and AGB using a crown spheroid surface area approach. MFM estimates of AGB were evaluated for 36 deciduous (trembling aspen) and conifer (lodgepole pine) field validation sites and compared against spectral mixture analysis (SMA) and normalised difference vegetation index (NDVI) biomass predictions from atmospherically and topographically corrected (SCS+C) imagery. MFM provided the lowest error for all validation plots of 31.7 tonnes/hectare (t/ha) versus SMA (32.6 t/ha error) and NDVI (34.7 t/ha) as well as for conifer plots (MFM: 23.0 t/ha; SMA 27.9 t/ha; NDVI 29.7 t/ha) but had higher error than SMA and NDVI for deciduous plots (by 4.5 t/ha and 2.1 t/ha, respectively). The MFM approach was considerably more stable over the full range of biomass values (67 to 243 t/ha) measured in the field. Field plots with biomass > 1 standard deviation from the field mean (over 30% of plots) had biomass estimation errors of 37.9 t/ha using MFM compared with 65.5 t/ha and 67.5 t/ha error from SMA and NDVI, respectively. In addition to providing more accurate overall results and greater stability over the range of biomass values, the MFM approach also provides a suite of other biophysical structural outputs such as density, crown dimensions, LAI, height and sub-pixel scale fractions. Its explicit physical-basis and minimal ground data requirements are also more appropriate for larger area, multi-scene, multi-date applications with variable scene geometry and in high relief terrain. MFM thus warrants consideration for applications in mountainous and other, less complex terrain for purposes such as forest inventory updates, ecological modeling and terrestrial biomass and carbon monitoring studies.  相似文献   

16.
The present study deals with the mapping of forest basal cover and biomass using IRS data. IRS-LISS-I data were classified into forest types and crown cover categories. A stand biomass was computed for selected sites using density, basal cover data and biomass estimation equations. Allometric relations were developed between crown cover and basal cover and between crown cover and biomass. Using these relations basal cover and biomass were computed for each crown cover class of each forest type. The classes having identical biomass were merged together. Total biomass for each forest type was computed by using mean values and the aerial extent. The average total above-ground biomass density between forest types ranged between 52–36tha-1 ∥Plantations) and 371–08tha-1 (Sal forest). The estimates of the study compared well with the estimates for 19 sites computed through conventional techniques. The method described in the present study is expected to play a significant role in global biomass estimations.  相似文献   

17.
Understanding the spatial variability of tropical forest structure and its impact on the radar estimation of aboveground biomass (AGB) is important to assess the scale and accuracy of mapping AGB with future low frequency radar missions. We used forest inventory plots in old growth, secondary succession, and forest plantations at the La Selva Biological Station in Costa Rica to examine the spatial variability of AGB and its impact on the L-band and P-band polarimetric radar estimation of AGB at multiple spatial scales. Field estimation of AGB was determined from tree size measurements and an allometric equation developed for tropical wet forests. The field data showed very high spatial variability of forest structure with no spatial dependence at a scale above 11 m in old-growth forest. Plot sizes of greater than 0.25 ha reduced the coefficients of variation in AGB to below 20% and yielded a stationary and normal distribution of AGB over the landscape. Radar backscatter measurements at all polarization channels were strongly positively correlated with AGB at three scales of 0.25 ha, 0.5 ha, and 1.0 ha. Among these measurements, PHV and LHV showed strong sensitivity to AGB < 300 Mg ha− 1 and AGB < 150 Mg ha− 1 respectively at the 1.0 ha scale. The sensitivity varied across forest types because of differences in the effects of forest canopy and gap structure on radar attenuation and scattering. Spatial variability of structure and speckle noise in radar measurements contributed equally to degrading the sensitivity of the radar measurements to AGB at spatial scales less than 1.0 ha. By using algorithms based on polarized radar backscatter, we estimated AGB with RMSE = 22.6 Mg ha− 1 for AGB < 300 Mg ha− 1 at P-band and RMSE = 23.8 Mg ha− 1 for AGB < 150 Mg ha− 1 at L-band and with the accuracy optimized at 1-ha scale within 95% confidence interval. By adding the forest height, estimated from the C-band Interferometry data as an independent variable to the algorithm, the AGB estimation improved beyond the backscatter sensitivity by 20% at P-band and 40% at L-band. The results suggested the estimation of AGB can be improved substantially from the fusion of lidar or InSAR derived forest height with the polarimetric backscatter.  相似文献   

18.
19.
Maps that accurately quantify aboveground vegetation biomass (AGB) are essential for ecosystem monitoring and conservation. Throughout Namibia, four vegetation change processes are widespread, namely, deforestation, woodland degradation, the encroachment of the herbaceous and grassy layers by woody strata (woody thickening), and woodland regrowth. All of these vegetation change processes affect a range of key ecosystem services, yet their spatial and temporal dynamics and contributions to AGB change remain poorly understood. This study quantifies AGB associated with the different vegetation change processes over an 8-year period, for a region of Kalahari woodland savannah in northern Namibia. Using data from 101 forest inventory plots collected during two field campaigns (2014–2015), we model AGB as a function of the Advanced Land Observing Satellite Phased Array L-band synthetic aperture radar (PALSAR and PALSAR-2) and dry season Landsat vegetation index composites, for two periods (2007 and 2015). Differences in AGB between 2007 and 2015 were assessed and validated using independent data, and changes in AGB for the main vegetation processes are quantified for the whole study area (75,501 km2). We find that woodland degradation and woody thickening contributed a change in AGB of ?14.3 and 2.5 Tg over 14% and 3.5% of the study area, respectively. Deforestation and regrowth contributed a smaller portion of AGB change, i.e. ?1.9 and 0.2 Tg over 1.3% and 0.2% of the study area, respectively.  相似文献   

20.
A literature review of new publications in the field of 3D data for forest applications shows that the application of airborne laser scanner data (ALS) is in the focus of research today due to its great potential for practical applications. While there is a lot of research carried out to derive forest management parameters based on laser metrics deduced from a single tree assessment or a statistical area based assessment, the delineation of stand or sub‐stand units derived from laser metrics itself is a rather new approach. In order to describe stand characteristics statistical grid cell approaches or single tree approaches have been developed. The LIDAR based segmentation of stand or sub‐stand units is rarely documented. This article provides information on enhanced processes to delineate stand or sub‐stand units and to extract different forest information based on airborne laser derived parameters. For the stand delineation an automatic process was developed which provides a stand or sub‐stand unit delineation which is according to the first results sufficiently uniform within stands and sufficiently different in species, age class, height class, structure and composition between stands in order to be distinguishable from adjacent areas. With a combined method the stand boundaries as they are established by the mapping units today, as well as sub‐stand units which have in common physical characteristics indicating the same management disposition, were assessed. Finally a first validation of the forest stand unit delineation is provided, indicating the high potential of ALS data for separating stand units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号