首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It was demonstrated in the past that radar data is useful to estimate aboveground biomass due to their interferometric capability. Therefore, the potential of a globally available TanDEM-X digital elevation model (DEM) was investigated for aboveground biomass estimation via canopy height models (CHMs) in a tropical peat swamp forest. However, CHMs based on X-band interferometers usually require external terrain models. High accurate terrain models are not available on global scale. Therefore, an approach exclusively based on TanDEM-X and the decrease of accuracy compared to an approach utilizing a high accurate terrain model is assessed. In addition, the potential of X-band interferometric heights in tropical forests needs to be evaluated. Therefore, two CHMs were derived from an intermediate TanDEM-X DEM (iDEM; as a precursor for WorldDEMTM) alone and in combination with lidar measurements used as terrain model. The analysis showed high accuracies (root mean square error [RMSE] = 5 m) for CHMs based on iDEM and reliable estimation of aboveground biomass. The iDEM CHM, exclusively based on TanDEM-X, achieved a poor R2 of 0.2, nonetheless resulted in a cross-validated RMSE of 54 t ha?1 (16%). The low R2 suggested that the X-band height alone was not sufficient to estimate an accurate CHM, and thus the need for external terrain models was confirmed. A CHM retrieved from the difference of iDEM and an accurate lidar terrain model achieved a considerably higher correlation with aboveground biomass (R2 = 0.68) and low cross-validated RMSE of 24.5 t ha?1 (7.5%). This was higher or comparable to other aboveground biomass estimations in tropical peat swamp forests. The potential of X-band interferometric heights for CHM and biomass estimation was thus confirmed in tropical forest in addition to existing knowledge in boreal forests.  相似文献   

2.
Optimizing nitrogen (N) fertilization in crop production by in-season measurements of crop N status may improve fertilizer N use efficiency. Hyperspectral measurements may be used to assess crop N status indirectly by estimating leaf and canopy chlorophyll content. This study evaluated the ability of the PROSAIL canopy-level reflectance model to predict leaf chlorophyll content of spring wheat (Triticum aestivum L.) during the growth stages between pre-tillering (Zadoks Growth Stage (ZGS 15)) to booting (ZGS50). Spring wheat was grown under different N fertility rates (0–200 kg N ha?1) in 2002. Canopy reflectance, leaf chlorophyll content, N content and leaf area index (LAI) values were measured. There was a weakly significant trend for the PROSAIL model to over-estimate LAI and under-estimate leaf chlorophyll content. To compensate for this interdependency by the model, a canopy chlorophyll content parameter (the product of leaf chlorophyll content and LAI) was calculated. The estimation accuracy for canopy chlorophyll content was generally low earlier in the growing season. This failure of the PROSAIL model to estimate leaf and canopy variables could be attributed to model sensitivity to canopy architecture. Earlier in the growing season, full canopy closure was not yet achieved, resulting in a non-homogenous canopy and strong soil background interference. The canopy chlorophyll content parameter was predicted more accurately than leaf chlorophyll content alone at booting (ZGS 45). A strong relationship between canopy chlorophyll content and canopy N content at ZGS 45 indicates that the PROSAIL model may be used as a tool to predict wheat N status from canopy reflectance measurements at booting or later.  相似文献   

3.
Abstract

Direct derivation of biomass from radar backscattering gives erratic results so this paper discusses another method in which biomass was not estimated directly but was found as the accumulated value of the estimated crop growth rate. The estimation was based on soil crop cover and global radiation. The relationship between soil cover in the optical and microwave regions was investigated. Analysis of the methodology showed that improvement is obtained in comparison with the direct estimation method. Despite variation in parameters for different years, a remarkable consistency in estimated biomass was observed. Nevertheless, measurements of radar backscattering still suffer from too much variation to be reliable for biomass estimation.  相似文献   

4.
Do flowers affect biomass estimate accuracy from NDVI and EVI?   总被引:1,自引:0,他引:1  
The Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) are vegetation indices widely used in remote sensing of above-ground biomass. Because both indexes are based on spectral features of plant canopy, NDVI and EVI may suffer reduced accuracy in estimating above-ground biomass when flower signals are mixed in the plant canopy. This paper addresses how flowers influence the estimation of above-ground biomass using NDVI and EVI for an alpine meadow with mixed yellow flowers of Halerpestes tricuspis (Ranunculaceae). Field spectral measurements were used in combination with simulated reflectance spectra with precisely controlled flower coverage by applying a linear spectral mixture model. Using the reflectance spectrum for the in-situ canopy with H. tricuspis flowers, we found no significant correlation between above-ground biomass and EVI (p?=?0.17) or between above-ground biomass and NDVI (p?=?0.78). However, both NDVI and EVI showed very good prediction of above-ground biomass with low root mean square errors (RMSE?=?43 g m?2 for NDVI and RMSE?=?43 g m?2 for EVI, both p < 0.01) when all the flowers were removed from the canopies. Simulation analysis based on the in-situ measurements further indicated that high variation in flower coverage among different quadrats could produce more noise in the relationship between above-ground biomass and NDVI, or EVI, which results in an evident decline in the accuracy of above-ground biomass estimation. Therefore, the study suggests that attention should be paid both to the flower fraction and the heterogeneity of flower distribution in the above-ground biomass estimation via NDVI and EVI.  相似文献   

5.
Satellite radar backscattering coefficient σ0 data from ENVISAT-ASAR and Normalized Difference Vegetation Index (NDVI) data from SPOT-VEGETATION are assimilated in the STEP model of vegetation dynamics. The STEP model is coupled with a radiative transfer model of the radar backscattering and NDVI signatures of the soil and herbaceous vegetation. These models are driven by field data (rainfall time series, soil properties, etc.). While some model parameters have fixed values, some other parameters have target values to be optimized. The study focuses on a well documented 1 km2 homogeneous area in a semi-arid region (Gourma, Mali).We here investigate whether departures between model predictions and the corresponding data result from field data errors, in situ data lack of representativeness or some model shortcomings. For this purpose we introduce an evolutionary strategy (ES) approach relying on a bi-objective function to be minimized in the data assimilation/inversion process. Several numerical experiments are conducted, in various mono-objective and bi-objective modes, and the performances of the model predictions compared in terms of NDVI, backscattering coefficient, leaf area index (LAI) and biomass.It is shown that the bi-objective ES leads to improved model predictions and also to a better readability of the results by exploring the Pareto front of optimal and admissible solutions. It is also shown that the information brought from the optical sensor and the radar is coherent; that the corresponding radiative transfer models are also coherent; that the representativeness of in situ data can be compared to satellite data through the modeling process. However some systematic biases on the biomass predictions (errors in the range 140 to 300 kg ha− 1) are observed. Thanks to the bi-objective ES, we are able to identify some likely shortcoming in the vegetation dynamics model relating the LAI to the biomass variables.  相似文献   

6.
Biomass has a direct relationship with agricultural production and may help to predict crop yield. Earth observation technology can contribute significantly to monitoring given the availability of temporally frequent and high-resolution radar or optical satellite data. Polarimetric Synthetic Aperture Radar (PolSAR) has several advantages for operational monitoring given that at these longer wavelengths atmospheric and illumination conditions do not affect acquisitions and considering the sensitivity of microwaves to the structural properties of targets. Therefore, SARs are a promising source of data for crop mapping and monitoring. With increasing access to SARs the development of robust methods to monitor crop productivity is timely.

In this paper, we examine the use of machine learning and artificial intelligence approaches to analyze a time series of Polarimetric parameters for crop biomass estimation. In total, 14 polarimetric parameters from a time series of Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) airborne L-band data were used for biomass estimation for an intensively cropped site in western Canada. Then, Multiple linear regression (MR) and artificial neural network (ANN) models were developed and evaluated to estimate the biomass for canola, corn, and soybeans. According to the experimental results, the ANN provided more accurate biomass estimates compared to MR.

Canola biomass, in general, showed less sensibility to almost all the polarimetric parameters. Nevertheless, Freeman-Double combined with vertical-vertical backscattering (VV) delivered the correlation coefficient (r) of 0.72, and the root mean square error (RMSE) of 56.55 g m?2of canola biomass. For corn, the highest correlation was observed between a pairing of horizontal- horizontal backscattering (HH) with Entropy (H) for biomass estimation yielding an r of 0.92 and RMSE of 196.71 g m?2. Horizontal-vertical backscattering (HV) and Yamaguchi-Surface (OY) delivered the highest sensitivity for soybeans (r of 0.82 and RMSE of 13.48 g m?2). If all crops are pooled, H combined with OY provided the most accurate estimates of biomass (r of 0.89 and RMSE of 135.31 g m?2). These results demonstrated that models which make use of polarimetric parameters that characterize the multiple sources of scattering typical of vegetation canopies can be used to estimate crop biomass accurately. Such results bode well for agricultural monitoring considering the increasing number of satellite SAR sensors with various frequencies, imaging modes and revisit times. As such, the time series analysis and methods proposed in this study could be used to monitor crop development and productivity using SAR space technologies.  相似文献   


7.
Predictions of tropical forest structure at the landscape level still present relatively high levels of uncertainty. In this study we explore the capabilities of high-resolution Satellite Pour l'Observation de la Terre (SPOT)-5 XS images to estimate basal area, tree volume and tree biomass of a tropical rainforest region in Chiapas, Mexico. SPOT-5 satellite images and forest inventory data from 87 sites were used to establish a multiple linear regression model. The 87 0.1-ha plots covered a wide range of forest structures, including mature forest, with values from 74.7 to 607.1 t ha?1. Spectral bands, image transformations and texture variables were explored as independent variables of a multiple linear regression model. The R2s of the final models were 0.58 for basal area, 0.70 for canopy height, 0.73 for bole volume, and 0.71 for biomass. A leave-one-out cross-validation produced a root mean square. error (RMSE) of 5.02 m2 ha?1 (relative RMSE of 22.8%) for basal area; 3.22 m (16.1%) for canopy height; 69.08 m3 ha?1 (30.7%) for timber volume, and 59.3 t ha?1 (21.2%) for biomass. In particular, the texture variable ‘variance of near-infrared’ turned out to be an excellent predictor for forest structure variables.  相似文献   

8.
A detailed 3D structural model of a conifer forest canopy was developed in order to simulate the reflectance (optical) and backscatter (microwave) signals measured remotely. We show it is feasible to model forest canopy scattering using detailed 3D models of tree structure including the location and orientation of individual needles. An existing structural growth model of Scots pine (Pinus sylvestris L.), Treegrow, was modified to simulate observed growth stages of a Scots pine canopy from age 5 to 50 years. The 3D tree models showed close structural agreement with in situ measurements. Needles were added to the structural models according to observed phyllotaxy (distribution). Individual trees were used to generate model canopies, which in turn were used to drive optical and microwave models of canopy scattering. Simulated canopy radiometric response was compared with airborne hyperspectral reflectance data (HyMAP) and airborne synthetic aperture RADAR (ASAR) backscatter data. Model simulations agreed well in general with observations, particularly at optical wavelengths where model simulations of low and high density canopy stands were shown to bracket observations. Relatively small sensitivity of observed reflectance to canopy age was captured reasonably well by the simulations. The choice of needle shape and phyllotaxy was shown to have a significant impact on multiple scattering behaviour at the branch scale. In the microwave domain, simulated backscatter values agreed reasonably well with observations at L-band, less so at X-band. L-band simulated backscatter significantly underestimated observed backscatter at younger canopy ages, probably as a result of inappropriate modelling of soil/understory. It is demonstrated that a combined structural and radiometric modelling approach provides a flexible and powerful method for simulating the remotely sensed signal of a forest canopy in the optical and microwave domains. This is particularly useful for exploring the impact of canopy structure on the resulting signal and also for combined retrievals of forest structural parameters from optical and microwave data.  相似文献   

9.
Total above-ground biomass of spruce, pine and birch was estimated in three different field datasets collected in young forests in south-east Norway. The mean heights ranged from 1.77 to 9.66 m. These field data were regressed against metrics derived from canopy height distributions generated from airborne laser scanner (ALS) data with a point density of 0.9–1.2 m?2. The field data consisted of 79 plots with size 200–232.9 m2 and 20 stands with an average size of 3742 m2. Total above-ground biomass ranged from 2.27 to 90.42 Mg ha?1. The influences of (1) regression model form, (2) canopy threshold value and (3) tree species on the relationships between biomass and ALS-derived metrics were assessed. The analysed model forms were multiple linear models, models with logarithmic transformation of the response and explanatory variables, and models with square root transformation of the response. The different canopy thresholds considered were fixed values of 0.5, 1.3 and 2.0 m defining the limit between laser canopy echoes and below-canopy echoes. The proportion of explained variability of the estimated models ranged from 60% to 83%. Tree species had a significant influence on the models. For given values of the ALS-derived metrics related to canopy height and canopy density, spruce tended to have higher above-ground biomass values than pine and deciduous species. There were no clear effects of model form and canopy threshold on the accuracy of predictions produced by cross validation of the various models, but there is a risk of heteroskedasticity with linear models. Cross validation revealed an accuracy of the root mean square error (RMSE) ranging from 3.85 to 13.9 Mg ha?1, corresponding to 22.6% to 48.1% of mean field-measured biomass. It was concluded that airborne laser scanning has a potential for predicting biomass in young forest stands (> 0.5 ha) with an accuracy of 20–30% of mean ground value.  相似文献   

10.
Chlorophyll content can be used as an indicator to monitor crop diseases. In this article, an experiment on winter wheat stressed by stripe rust was carried out. The canopy reflectance spectra were collected when visible symptoms of stripe rust in wheat leaves were seen, and canopy chlorophyll content was measured simultaneously in laboratory. Continuous wavelet transform (CWT) was applied to process the smoothed spectral and derivative spectral data of winter wheat, and the wavelet coefficient features obtained by CWT were regarded as the independent variable to establish estimation models of chlorophyll content. The hyperspectral vegetation indices were also regarded as the independent variable to build estimation models. Then, two types of models above-mentioned were compared to ascertain which type of model is better. The cross-validation method was used to determine the model accuracies. The results indicated that the estimation model of chlorophyll content, which is a multivariate linear model constructed using wavelet coefficient features extracted by Mexican Hat wavelet function processing the smoothed spectrum (WSMH1 and WSMH2), is the best model. It has the highest estimation accuracy with modelled coefficient of determination (R2) of 0.905, validated R2 of 0.913, and root mean square error (RMSE) of 0.288 mg fg?1. The univariate linear model built by wavelet coefficient feature of WSMH1 is secondary and the modelled R2 is 0.797, validated R2 is 0.795, and RMSE is 0.397 mg fg?1. Both estimation models are better than those of all hyperspectral vegetation indices. The research shows that the feature information of canopy chlorophyll content of winter wheat can be captured by wavelet coefficient features which are extracted by the method of CWT processing canopy reflectance spectrum data. Therefore, it could provide theoretical support on detecting diseases of crop by remote sensing quantitatively estimating chlorophyll content.  相似文献   

11.
Multi-temporal, multi-frequency (1-2-17-25 GHz) radar data collected with the DUTSCAT airborne scatterometer over the Flevoland test site in the Agriscatt-1988 campaign, were analysed in relation to crop type and crop growth of mainly sugar-beet, potato and winter wheat. Two frequency ranges were distinguished that had specific backscattering behaviour: the low frequency L-band and the high frequencies X- to Ku2-band. The L-band had the largest relative content of variation on bare soils and was shown to penetrate potato canopy. The high frequencies, namely the X- to Ku2-bands, had the largest relative content of variation on crop covers and were shown to be relatively sensitive to canopy structure. These bands were (equally) well suitable for the separation between crop types. All bands were equally useful to indicate qualitatively the growth of beet and potato in the early growing season. The backscattering of wheat appeared not to be related to growth of the crop in any of the frequency bands. The theoretical backscattering model of Eom and Fung was evaluated for its ability to describe radar signatures of crops. It appeared that care should be taken with the representation of leaves as di-electric ellipsoids in the model, notably when the leaf surface is undulating (beet) or composed (potato)  相似文献   

12.
This study focuses on developing a new method of surface soil moisture estimation over wheat fields using Environmental Satellite Advanced Synthetic Aperture Radar (Envisat ASAR) and Landsat Thematic Mapper (TM) data. The Michigan Microwave Canopy Scattering (MIMICS) model was used to simulate wheat canopy backscattering coefficients from experiment plots at incidence angles of 23° (IS2) and 43.9° (IS7). Based on simulated data, the scattering characteristics of a wheat canopy were first investigated in order to derive an optimal configuration of polarization (HH) and incidence angle (IS2) for soil moisture estimation. Then a parametric model was developed to describe wheat canopy backscattering at the optimal configuration. In addition, direct backscattering and two-way transmissivity of wheat crowns were derived from the TM normalized difference vegetation index (NDVI); direct ground backscattering was derived from surface soil moisture and TM NDVI; and backscattering from double scattering was derived from total backscattering. A semi-empirical model for soil moisture estimation was derived from the parametric model. Coefficients in the semi-empirical model were obtained using a calibration approach based on measured soil moisture, ASAR, and TM data. A validation of the model was performed over the experimental area. In this study, the root mean square error (RMSE) for the estimated soil moisture was 0.041 m3 m?3, and the correlation coefficient between the measured and estimated soil moisture was 0.84. The experimental results indicate that the semi-empirical model could improve soil moisture estimation compared to an empirical model.  相似文献   

13.
ABSTRACT

The aim of this study was to investigate the capabilities of two date satellite-derived image-based point clouds (IPCs) to estimate forest aboveground biomass (AGB). The data sets used include panchromatic WorldView-2 stereo-imagery with 0.46 m spatial resolution representing 2014 and 2016 and a detailed digital elevation model derived from airborne laser scanning data. Altogether, 332 field sample plots with an area of 256 m2 were used for model development and validation. Predictors describing forest height, density, and variation in height were extracted from the IPC 2014 and 2016 and used in k-nearest neighbour imputation models developed with sample plot data for predicting AGB. AGB predictions for 2014 (AGB2014) were projected to 2016 using growth models (AGBProjected_2016) and combined with the AGB estimates derived from the 2016 data (AGB2016). AGB prediction model developed with 2014 data was also applied to 2016 data (AGB2016_pred2014). Based on our results, the change in the 90th percentile of height derived from the WorldView-2 IPC was able to characterize forest height growth between 2014 and 2016 with an average growth of 0.9 m. Features describing canopy cover and variation in height derived from the IPC were not as consistent. The AGB2016 had a bias of ?7.5% (?10.6 Mg ha?1) and root mean square error (RMSE) of 26.0% (36.7 Mg ha?1) as the respective values for AGBProjected_2016 were 7.0% (9.9 Mg ha?1) and 21.5% (30.8 Mg ha?1). AGB2016_pred2014 had a bias of ?19.6% (?27.7 Mg ha?1) and RMSE of 33.2% (46.9 Mg ha?1). By combining predictions of AGB2016 and AGBProjected_2016 at sample plot level as a weighted average, we were able to decrease the bias notably compared to estimates made on any single date. The lowest bias of ?0.25% (?0.4 Mg ha?1) was obtained when equal weights of 0.5 were given to the AGBProjected_2016 and AGB2016 estimates. Respectively, RMSE of 20.9% (29.5 Mg ha?1) was obtained using equal weights. Thus, we conclude that combination of two date WorldView-2 stereo-imagery improved the reliability of AGB estimates on sample plots where forest growth was the only change between the two dates.  相似文献   

14.
TerraSAR-X (TS-X) is a new, fully polarized X-band synthetic aperture radar (SAR) satellite, which is a successor of the Spaceborne Imaging Radar X-band Synthetic Aperture Radar (SIR-X-SAR) and the SRTM. TS-X has provided high-quality image products over land and oceans for scientific and commercial users since its launch in June 2007. In this article, a new geophysical model function (GMF) is presented to retrieve sea surface wind speeds at a height of 10 m (U 10) based on TS-X data obtained with VV polarization in the ScanSAR, StripMap and Spotlight modes. The X-band GMF was validated by comparing the retrieved wind speeds from the TS-X data with in situ observations, the high-resolution limited area model (HIRLAM) and QuikSCAT scatterometer measurements. The bias and root mean square (RMS) values were 0.03 and 2.33 m s?1, respectively, when compared with the co-located wind measurements derived from QuikSCAT. To apply the newly developed GMF to the TS-X data obtained in HH polarization, we analysed the C-band SAR polarization models and extended them to the X-band SAR data. The sea surface wind speeds were retrieved using the X-band GMF from pairs of TS-X images obtained in dual-polarization mode (i.e. VV and HH). The retrieved results were also validated by comparing with QuikSCAT measurements and the results of the German Weather Service (DWD) atmospheric model. The obtained RMS was 2.50 m s?1 when compared with the co-located wind measurements derived from the QuikSCAT, and the absolute error was 2.24 m s?1 when compared with DWD results.  相似文献   

15.
This study developed biomass models to calculate carbon stock levels of the West African oil palms (Elaeis guineensis) using multi-date wet and dry season IKONOS images. Two benchmark areas of the derived savanna eco-regions of Africa were selected for analysis. Allometric equations related above-ground palm biomass to their stem heights. Empirical regression models based on field plot data were established to determine wet and dry biomass (kg m?2) of oil palm plantations in IKONOS images. The best models were exponential, involving bands 3, 3 and 1, or 3 and 4, and explaining between 63 and 72% of the variability in the data. Model evaluations with independent datasets showed there is 28-36% uncertainty in dry biomass predictions. At the landscape level, multi-date IKONOS data mapped oil palm plantations with an overall accuracy of 88-92%. However, the ability of IKONOS data to differentiate various age groups of oil palms was limited with a high degree of intermixing of classes. The best results were obtained when delineating agro-palm (palms mixed with agriculture and fallows), palm of 1-3 years, and palm of 4-5 years at an overall accuracy of 74.5% using all four IKONOS bands. The results indicate the need for additional spectral bands in the IKONOS sensor. The total carbon per unit area of oil palms was calculated across age groups for the two benchmark areas of West Africa and were 14.75 and 14.94 tonnes ha?1 (or Mg ha?1), respectively. The corresponding dry biomass (kg m?2) were 29.5 and 29.88 tonnes ha?1 (or Mg ha?1). The age of the oil palms were between 1 and 5 years across benchmark areas. The mean rate of accumulation of carbon was 2.95 t C ha?1 year?1 in benchmark area 1 and 2.99 t C ha?1 year?1 in benchmark area 2.  相似文献   

16.
ABSTRACT

Due to the signal-to-noise ratio (SNR) of sensors, as well as atmospheric absorption and illumination conditions, etc., hyperspectral data at some bands are of poor quality. Data restoration for noisy bands is important for many remote sensing applications. In this paper, we present a novel data-driven Principal Component Analysis (PCA) approach for restoring leaf reflectance spectra at noisy bands using the spectra at effective bands. The technique decomposes the leaf reflectance spectra into their principal components (PCs), selects the leading PCs that describe the most variance in the data, and restores the data from these components. First, the first 10 PCs were determined from a training dataset simulated by the leaf optical properties model (PROSPECT-5) that contained 99.998% of the total information in the 3636 training samples. Then, the performance of the PCA method for restoration of the reflectance at noisy bands was investigated using the ANGERS leaf optical properties dataset; the results showed the spectral root mean squared error (RMSE) is in the range 6.46 × 10?4 to 6.44 × 10?2, which is about 3 ? 34 times more accurate than the stepwise regression method and partial least squares method (PLSR) for the ANGERS dataset. The results also showed that if the noisy bands are far away from the effective bands, the accuracy of the restored leaf reflectance spectra will decrease. Thirdly, the reliability of the restored reflectance spectra for retrieving leaf biochemical contents was assessed using the ANGERS dataset and leaf optical properties dataset established by the Beijing Academy of Agriculture and Forestry Sciences (BAAFS). Three water-sensitive vegetation indices ? normalized difference water index (NDWI), normalized difference infrared index (NDII) and Datt water index (DWI), derived from the restored leaf spectra ? were employed to retrieve the equivalent water thickness (EWT). The results showed that the leaf water content can be accurately retrieved from the restored leaf reflectance spectra. In addition, the PCA method to restore vegetation spectral reflectance can be applied on canopy level as well. The results showed that the spectral root mean squared error (RMSE) is in the range 8.22 × 10?4 to 1.87 × 10?2. The performance of the restored canopy spectra was investigated according to the results of retrieving canopy equivalent water thickness (CEWT) using the five spectral indices NDWI, NDWI1370, NDWI1890, NDII and DWI. The results indicated that the restored canopy spectra can be used for retrieving CEWT reliably and improve the accuracy of retrieval compared to the results using original canopy reflectance spectra.  相似文献   

17.
Ground-penetrating radar (GPR) with a suspended 1 GHz horn antenna was deployed for measurement of soil water contents and crop canopy properties over bare and electrically terminating surfaces. Surface reflection (SR) and signal propagation times (PT) were used to independently determine dielectric permittivity and water content of soil and canopy. Measured surface reflection coefficients progressively decreased with increasing canopy biomass according to Beer-Lambert type relationships. In contrast, PT measurements remained unaffected by canopy, and hence provided an accurate account of soil water content dynamics. Immediately after canopy removal, SR-based soil water content measurements were in close agreement with PT values. Canopy dielectric properties were inferred from canopy water contents (?c-CWC) and canopy propagation times (?c-CPT). Distinct canopy reflections were correlated with key canopy biophysical parameters. The study demonstrates the usefulness of a horn antenna GPR for characterization of vegetation canopy scattering, and for subcanopy water content measurements within a well-defined footprint, thereby offering a potential for calibration and verification of radar data collected from air- and spaceborne platforms.  相似文献   

18.
The inflection point of spectral reflectance of crop in the red edge region (680–780 nm) is termed as the red edge position (REP), which is sensitive to crop biochemical and biophysical parameters. We propose a technique for automatic detection of four dynamic wavebands, i.e. two in the far-red and two in the near-infrared (NIR) region from hyperspectral data, for REP estimation using the linear extrapolation method. A field experiment was conducted at the SHIATS Farm, Allahabad, India, with four levels of nitrogen and irrigation treatments to assess the sensitivity of REP towards crop stress. A correlation analysis was carried out between REPs and different biophysical parameters, such as leaf area index (LAI) and chlorophyll content index (CCI), recorded in each plot at 50, 70, and 90 days after sowing of wheat crop under the field experiment. The inter-comparison among different REP extraction techniques revealed that the proposed technique, i.e. the modified linear extrapolation (MLE) method, has a better ability to distinguish different crop stress conditions. REPs extracted using the MLE technique showed high correlations with a wide range of LAI, CCI, and LAI × CCI, being comparable with results obtained using the traditional linear extrapolation and polynomial fitting techniques. The behaviour of the new techniques was found to be stable at both narrower and broader bandwidth, i.e. 2 and 10 nm. A new red-edge-based index, i.e. area under REP (AREP), was used to detect the cumulative stress over wheat crop by utilizing the REP and its rate of change information at different crop growth stages. A high coefficient of determination (R2 = 0.89) was found between AREP and dry grain yield (Q ha?1) up to 50 Q ha?1 of wheat crop, whereas, beyond this range the relationship was found to be diminishing.  相似文献   

19.
20.
A ground-based fully polarimetric scatterometer operating at multiple frequencies was used to continuously monitor soybean growth over the course of a growing season. Polarimetric backscatter data at L-, C-, and X-bands were acquired every 10 min. We analysed the relationships between L-, C-, and X-band signatures, and biophysical measurements over the entire soybean growth period. Temporal changes in backscattering coefficients for all bands followed the patterns observed in the soybean growth measurements (leaf area index (LAI) and vegetation water content (VWC)). The difference between the backscattering coefficients for horizontally transmitted horizontally received (HH) and vertically transmitted vertically received (VV) polarizations at the L-band was apparent after the R2 stage (DOY 224) due to the double-bounce scattering effect. Results indicated that L-, C-, and X-band radar backscatter data can be used to detect different soybean growth stages. The results of correlation analyses between the backscattering coefficient for specific bands/polarizations and soybean growth data showed that L-band HH-polarization had the highest correlation with the vegetation parameters LAI (r = 0.98) and VWC (r = 0.97). Prediction equations for estimation of soybean growth parameters from the L-HH were developed. The results indicated that L-HH could be used for estimating the vegetation biophysical parameters considered here with high accuracy. These results provide a basis for developing a method to retrieve crop biophysical properties and guidance on the optimum microwave frequency and polarization necessary to monitor crop conditions. The results are directly applicable to systems such as the proposed NASA Soil Moisture Active Passive (SMAP) satellite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号