首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies using satellite sensor-derived data as input to models for CO2 exchange show promising results for closed forest stands. There is a need for extending this approach to other land cover types, in order to carry out large-scale monitoring of CO2 exchange. In this study, three years of eddy covariance data from two peatlands in Sweden were averaged for 16-day composite periods and related to data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and modeled photosynthetic photon flux density (PPFD). Noise in the time series of MODIS 250 m vegetation indices was reduced by using double logistic curve fits. Smoothed normalized difference vegetation index (NDVI) showed saturation during summertime, and the enhanced vegetation index (EVI) generally gave better results in explaining gross primary productivity (GPP). The strong linear relationships found between GPP and the product of EVI and modeled PPFD (R2 = 0.85 and 0.76) were only slightly stronger than for the product of EVI and MODIS daytime 1 km land surface temperature (LST) (R2 = 0.84 and 0.71). One probable reason for these results is that several controls on GPP were related to both modeled PPFD and daytime LST. Since ecosystem respiration (ER) was largely explained by diurnal LST in exponential relationships (R2 = 0.89 and 0.83), net ecosystem exchange (NEE) was directly related to diurnal LST in combination with the product of EVI and modeled PPFD in multiple exponential regressions (R2 = 0.81 and 0.73). Even though the R2 values were somewhat weaker for NEE, compared to GPP and ER, the RMSE values were much lower than if NEE would have been estimated as the sum of GPP and ER. The overall conclusion of this study is that regression models driven by satellite sensor-derived data and modeled PPFD can be used to estimate CO2 fluxes in peatlands.  相似文献   

2.
Many current models of ecosystem carbon exchange based on remote sensing, such as the MODIS product termed MOD17, still require considerable input from ground based meteorological measurements and look up tables based on vegetation type. Since these data are often not available at the same spatial scale as the remote sensing imagery, they can introduce substantial errors into the carbon exchange estimates. Here we present further development of a gross primary production (GPP) model based entirely on remote sensing data. In contrast to an earlier model based only on the enhanced vegetation index (EVI), this model, termed the Temperature and Greenness (TG) model, also includes the land surface temperature (LST) product from MODIS. In addition to its obvious relationship to vegetation temperature, LST was correlated with vapor pressure deficit and photosynthetically active radiation. Combination of EVI and LST in the model substantially improved the correlation between predicted and measured GPP at 11 eddy correlation flux towers in a wide range of vegetation types across North America. In many cases, the TG model provided substantially better predictions of GPP than did the MODIS GPP product. However, both models resulted in poor predictions for sparse shrub habitats where solar angle effects on remote sensing indices were large. Although it may be possible to improve the MODIS GPP product through improved parameterization, our results suggest that simpler models based entirely on remote sensing can provide equally good predictions of GPP.  相似文献   

3.
Leaf phenology of tropical evergreen forests affects carbon and water fluxes. In an earlier study of a seasonally moist evergreen tropical forest site in the Amazon basin, time series data of Enhanced Vegetation Index (EVI) from the VEGETATION and Moderate Resolution Imaging Spectroradiometer (MODIS) sensors showed an unexpected seasonal pattern, with higher EVI in the late dry season than in the wet season. In this study we conducted a regional-scale analysis of tropical evergreen forests in South America, using time series data of EVI from MODIS in 2002. The results show a large dynamic range and spatial variations of annual maximum EVI for evergreen forest canopies in the region. In tropical evergreen forests, maximum EVI in 2002 typically occurs during the late dry season to early wet season. This suggests that leaf phenology in tropical evergreen forests is not determined by the seasonality of precipitation. Instead, leaf phenological process may be driven by availability of solar radiation and/or avoidance of herbivory.  相似文献   

4.
Net ecosystem exchange (NEE) of CO2 between the atmosphere and forest ecosystems is determined by gross primary production (GPP) of vegetation and ecosystem respiration. CO2 flux measurements at individual CO2 eddy flux sites provide valuable information on the seasonal dynamics of GPP. In this paper, we developed and validated the satellite-based Vegetation Photosynthesis Model (VPM), using site-specific CO2 flux and climate data from a temperate deciduous broadleaf forest at Harvard Forest, Massachusetts, USA. The VPM model is built upon the conceptual partitioning of photosynthetically active vegetation and non-photosynthetic vegetation (NPV) within the leaf and canopy. It estimates GPP, using satellite-derived Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI), air temperature and photosynthetically active radiation (PAR). Multi-year (1998-2001) data analyses have shown that EVI had a stronger linear relationship with GPP than did the Normalized Difference Vegetation Index (NDVI). Two simulations of the VPM model were conducted, using vegetation indices from the VEGETATION (VGT) sensor onboard the SPOT-4 satellite and the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard the Terra satellite. The predicted GPP values agreed reasonably well with observed GPP of the deciduous broadleaf forest at Harvard Forest, Massachusetts. This study highlighted the biophysical performance of improved vegetation indices in relation to GPP and demonstrated the potential of the VPM model for scaling-up of GPP of deciduous broadleaf forests.  相似文献   

5.
Light use efficiency (LUE) is of great importance for carbon cycle and climate change research. This study presents a new LUE model incorporation of vegetation indices (VIs) and land surface temperature (LST) derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) in Harvard Forest. Three indices, including the normalized difference vegetation index (NDVI), the two-band enhanced vegetation index (EVI2) and the soil-adjusted vegetation index (SAVI), were selected as indicators of forest canopy greenness. A single VI provided moderate estimates of LUE with coefficients of determination (R 2) 0.6219, 0.7094 and 0.7502 for NDVI, EVI2 and SAVI, respectively. Our results demonstrated that canopy LUE was related both to the canopy photosynthesis efficiency and air temperature (R 2?=?0.5634). Therefore, the MODIS LST product was incorporated as a surrogate for monitoring of environmental stresses as the observed relationship between LST and both air temperature (R 2?=?0.8828) and vapour pressure deficit (VPD) (R 2?=?0.6887). The new model in terms of (VI)?×?(Scaled (LST)) provided improved estimates of LUE estimation with R 2 of 0.7349, 0.7561 and 0.7879 for NDVI, EVI2 and SAVI, respectively. The results will be useful for the development of future LUE models based entirely on remote-sensing observations.  相似文献   

6.
The carbon use efficiency (CUE) of a forest, calculated as the ratio of net primary productivity (NPP) to gross primary productivity (GPP), measures how efficiently a forest sequesters atmospheric carbon. Some prior research has suggested that CUE varies with environmental conditions, while other suggests that CUE is constant. Research using Moderate Resolution Imaging Spectroradiometer (MODIS) data has indicated a variable CUE, but those results are suspected because MODIS NPP data have not been well validated.

We tested two questions. First, whether MODIS CUE is constant or whether it varies by forest type, climate, and geographic factors across the eastern USA. Second, whether those results occur when field-based NPP data are employed. We used MODIS model-based estimates of GPP and NPP, and forest inventory and anlaysis (FIA) field-based estimates of NPP data. We calculated two estimates of CUE for forest in 390 km2 hexagons: (1) MODIS CUE as MODIS NPP divided by MODIS GPP and (2) F/M ZCUE as the standardized difference between FIA NPP and MODIS GPP.

MODIS CUE and F/M ZCUE both varied similarly and significantly in relation to forest type, and climatic and geographic factors, strongly supporting a variable rather than a constant CUE. The CUE was significantly higher in deciduous than in mixed and evergreen forests. Regression models indicated that CUE decreased with increases in temperature and precipitation and increased with latitude and altitude. The similar trends in MODIS CUE and F/M ZCUE support the use of the more easily obtained MODIS CUE.  相似文献   

7.
For the estimation of annual Gross Primary Productivity(GPP),it is proposed an estimation method with simple parameters and small errors.By taking each type of vegetation in the area of Three-North Shelterbelt Program(TNSP) as the research subject,the MODIS vegetation indices were obtained,and the seasonal variation curve of vegetation indices were built.Then,the fitting relation between the integral of time series vegetation indices(ΣVIs) and GPP products of MODIS was established,so as to realize a simple GPP estimation method and study the applicable ΣVIs for estimating the GPP of all vegetation types.The results show that:(1) ΣVIs is suitable for estimating the annual total GPP in research area and significantly correlated with MODIS GPP at the confidence level of p<0.01;(2) ΣEVI2 is applicable to estimate the GPP of evergreen needleleaf forest,decidious needleleaf forest,decidious broadleaf forest,mixed forest,woody savannas,savannas,permanent wetlands,croplands,croplands/natural vegetation mosaic,while the effect of ΣNDVI for estimating the GPP of closed shrublands,open shrublands,grasslands,croplands,and barren or sparsely vegetated is superior to ΣEVI andΣEVI2;(3) Since the NDVI itself is saturated in the area of high Leaf Area Index(LAI),the error of estimating the GPP of high LAI vegetation type by ΣNDVI is larger,while using ΣEVI and ΣEVI2 to estimate them has better accuracy,and the limitation from blue band of EVI2 reduces compared with EVI,which can be applied to the GPP research of long time series better.  相似文献   

8.
Semi-deciduous forest in the Amazon Basin is sensitive to temporal variation in surface water availability that can limit seasonal rates of leaf and canopy gas exchange. We estimated the seasonal dynamics of gross primary production (GPP) over 3 years (2005–2008) using eddy covariance and assessed canopy spectral reflectance using MODIS imagery for a mature tropical semi-deciduous forest located near Sinop, Mato Grosso, Brazil. A light-use efficiency model, known as the Vegetation Photosynthesis Model (VPM), was used to estimate seasonal and inter-annual variations in GPP as a function of the enhanced vegetation index (EVI), the land surface water index (LSWI), and local meteorology. Our results indicate that the standard VPM was incapable of reproducing the seasonal variation in GPP, primarily because the model overestimated dry-season GPP. In the standard model, the scalar function that alters light-use efficiency (εg) as a function of water availability (Wscalar) is calculated as a linear function of the LSWI derived from MODIS; however, the LSWI is negatively correlated with several measures of water availability including precipitation, soil water content, and relative humidity (RH). Thus, during the dry season, when rainfall, soil water content, and RH are low, LSWI, and therefore, Wscalar, are at a seasonal maximum. Using previous research, we derived new functions for Wscalar based on time series of RH and photosynthetic photon flux density (PPFD) that significantly improved the performance of the VPM. Whether these new functions perform equally well in water stressed and unstressed tropical forests needs to be determined, but presumably unstressed ecosystems would have high cloud cover and humidity, which would minimize variations in Wscalar and GPP to spatial and/or temporal variation in water availability.  相似文献   

9.
A CO2 eddy flux tower study has recently reported that an old-growth stand of seasonally moist tropical evergreen forest in Santarém, Brazil, maintained high gross primary production (GPP) during the dry seasons [Saleska, S. R., Miller, S. D., Matross, D. M., Goulden, M. L., Wofsy, S. C., da Rocha, H. R., de Camargo, P. B., Crill, P., Daube, B. C., de Freitas, H. C., Hutyra, L., Keller, M., Kirchhoff, V., Menton, M., Munger, J. W., Pyle, E. H., Rice, A. H., & Silva, H. (2003). Carbon in amazon forests: Unexpected seasonal fluxes and disturbance-induced losses. Science, 302, 1554-1557]. It was proposed that seasonally moist tropical evergreen forests have evolved two adaptive mechanisms in an environment with strong seasonal variations of light and water: deep roots system for access to water in deep soils and leaf phenology for access to light. Identifying tropical forests with these adaptive mechanisms could substantially improve our capacity of modeling the seasonal dynamics of carbon and water fluxes in the tropical zone. In this paper, we have analyzed multi-year satellite images from the VEGETATION (VGT) sensor onboard the SPOT-4 satellite (4/1998-12/2002) and the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra satellite (2000-2003). We reported temporal analyses of vegetation indices and simulations of the satellite-based vegetation photosynthesis model (VPM). The Enhanced Vegetation Index (EVI) identified subtle changes in the seasonal dynamics of leaf phenology (leaf emergence, leaf aging and leaf fall) in the forest, as suggested by the leaf litterfall data. The land surface water index (LSWI) indicated that the forest experienced no water stress in the dry seasons of 1998-2002. The VPM model, which uses EVI, LSWI and site-specific climate data (air temperature and photosynthetically active radiation, PAR) for 2001-2002, predicted high GPP in the late dry seasons, consistent with observed high evapotranspiration and estimated GPP from the CO2 eddy flux tower.  相似文献   

10.
Gross primary production (GPP) defined as the overall rate of fixation of carbon through the process of vegetation photosynthesis is important for carbon cycle and climate change research. Three models, the Vegetation Photosynthesis Model (VPM), the Temperature and Greenness (TG) model and the Vegetation Index (VI) model have been compared for the estimation of GPP in Harvard Forest from 2003 to 2006 using climate variables acquired by eddy covariance (EC) measurements and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images. All these models provide more reliable estimates of GPP than that of MODIS GPP product. High Pearsons correlation coefficients r equal to 0.94, 0.92 and 0.90 are observed for the VPM, the TG and the VI model, respectively. Relationships between GPP and land surface temperature (LST, R2 = 0.72), and vapor pressure deficit (VPD, R2 = 0.45) indicate that climate variables are important for GPP estimation. Due to proper characterization of temperature, water stress and leaf age by three scalars, VPM best follows the seasonal variations of GPP. By incorporation of the MODIS surface reflectance and LST product, the TG model is the most suitable choice for areas without prior knowledge as it is based entirely on remote sensing observations. Results from the VI model demonstrate the possibility of using a single vegetation index for light use efficiency (LUE) estimation in deciduous forest that is of high spatial heterogeneity. The validation and comparison of models will be helpful in development of future GPP models using combinations of climate variables and/or remote sensing observations.  相似文献   

11.
Remote sensing is a potentially powerful technology with which to extrapolate eddy covariance-based gross primary production (GPP) to continental scales. In support of this concept, we used meteorological and flux data from the AmeriFlux network and Support Vector Machine (SVM), an inductive machine learning technique, to develop and apply a predictive GPP model for the conterminous U.S. In the following four-step process, we first trained the SVM to predict flux-based GPP from 33 AmeriFlux sites between 2000 and 2003 using three remotely-sensed variables (land surface temperature, enhanced vegetation index (EVI), and land cover) and one ground-measured variable (incident shortwave radiation). Second, we evaluated model performance by predicting GPP for 24 available AmeriFlux sites in 2004. In this independent evaluation, the SVM predicted GPP with a root mean squared error (RMSE) of 1.87 gC/m2/day and an R2 of 0.71. Based on annual total GPP at 15 AmeriFlux sites for which the number of 8-day averages in 2004 was no less than 67% (30 out of a possible 45), annual SVM GPP prediction error was 32.1% for non-forest ecosystems and 22.2% for forest ecosystems, while the standard Moderate Resolution Imaging Spectroradiometer GPP product (MOD17) had an error of 50.3% for non-forest ecosystems and 21.5% for forest ecosystems, suggesting that the regionally tuned SVM performed better than the standard global MOD17 GPP for non-forest ecosystems but had similar performance for forest ecosystems. The most important explanatory factor for GPP prediction was EVI, removal of which increased GPP RMSE by 0.85 gC/m2/day in a cross-validation experiment. Third, using the SVM driven by remote sensing data including incident shortwave radiation, we predicted 2004 conterminous U.S. GPP and found that results were consistent with expected spatial and temporal patterns. Finally, as an illustration of SVM GPP for ecological applications, we estimated maximum light use efficiency (emax), one of the most important factors for standard light use efficiency models, for the conterminous U.S. by integrating the 2004 SVM GPP with the MOD17 GPP algorithm. We found that emax varied from ∼ 0.86 gC/MJ in grasslands to ∼ 1.56 gC/MJ in deciduous forests, while MOD17 emax was 0.68 gC/MJ for grasslands and 1.16 gC/MJ for deciduous forests, suggesting that refinements of MOD17 emax may be beneficial.  相似文献   

12.
The suitability of using Moderate Resolution Imaging Spectroradiometer (MODIS) images for surface soil moisture estimation to investigate the importance of soil moisture in different applications, such as agriculture, hydrology, meteorology and natural disaster management, is evaluated in this study. Soil moisture field measurements and MODIS images of relevant dates have been acquired. Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and Normalized Difference Water Index (NDWI) are calculated from MODIS images. In addition, MODIS Land Surface Temperature (LST) data (MOD11A1) are used in this analysis. Four different soil moisture estimation models, which are based on NDVI–LST, EVI–LST, NDVI–LST–NDWI and EVI–LST–NDWI, are developed and their accuracies are assessed. Statistical analysis shows that replacing EVI with NDVI in the model that is based on LST and NDVI increases the accuracy of soil moisture estimation. Accuracy evaluation of soil moisture estimation using check points shows that the model based on LST, EVI and NDWI values gives a higher accuracy than that based on LST and EVI values. It is concluded that the model based on the three indices is a suitable model to estimate soil moisture through MODIS imagery.  相似文献   

13.
The approach of using primarily satellite observations to estimate ecosystem gross primary production (GPP) without resorting to interpolation of many surface observations has recently shown promising results. Previous work has shown that the remote sensing based greenness and radiation (GR) model can give accurate GPP estimates in crops. However, the feasibility of its application and the model calibration to other ecosystems remain unknown. With the enhanced vegetation index (EVI) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) images and the surface based estimates of photosynthetically active radiation (PAR), we provide an analysis of the GR model for estimating monthly GPP using flux measurements at fifteen sites, representing a wide range of ecosystems with various canopy structures and climate characteristics. Results demonstrate that the GR model can provide better estimates of GPP than that of the temperature and greenness (TG) model for the overall data classified as non-forest (NF), deciduous forest (DF) and evergreen forest (EF) sites. Calibration of the GR model is also conducted and has shown reasonable results for all sites with a root mean square error of 47.18 g C/m2/month. Different coefficients acquired for the three plant functional types indicate that there are shifts of importance among various factors that determine the monthly vegetation GPP. The analysis firstly shows the potential use of the GR model in estimating GPP across biomes while it also points to the needs of further considerations in future operational applications.  相似文献   

14.
The eddy covariance technique provides valuable information on net ecosystem exchange (NEE) of CO2, between the atmosphere and terrestrial ecosystems, ecosystem respiration, and gross primary production (GPP) at a variety of CO2 eddy flux tower sites. In this paper, we develop a new, satellite-based Vegetation Photosynthesis Model (VPM) to estimate the seasonal dynamics and interannual variation of GPP of evergreen needleleaf forests. The VPM model uses two improved vegetation indices (Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI)). We used multi-year (1998-2001) images from the VEGETATION sensor onboard the SPOT-4 satellite and CO2 flux data from a CO2 eddy flux tower site in Howland, Maine, USA. The seasonal dynamics of GPP predicted by the VPM model agreed well with observed GPP in 1998-2001 at the Howland Forest. These results demonstrate the potential of the satellite-driven VPM model for scaling-up GPP of forests at the CO2 flux tower sites, a key component for the study of the carbon cycle at regional and global scales.  相似文献   

15.
We examined the relationship between four vegetation indices and tree canopy phenology in an evergreen coniferous forest in Japan based on observations made using a spectral radiometer and a digital camera at a daily time step during a 4 year period. The colour of the canopy surface of Japanese cedar (Cryptomeria japonica) changed from yellowish-green to whitish-green from late May to July and turned reddish-green in winter. The normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and plant area index (PAI) showed no seasonality. In contrast, the green–red ratio vegetation index (GRVI) increased from March to June and then decreased gradually from July to December, resulting in a bell-shaped curve. GRVI revealed seasonal changes in the colour of the canopy surface. GRVI correlated more positively with the evaluated maximum photosynthetic rate for the whole forest canopy, A max, than did NDVI or EVI. These results suggest the possibility that GRVI is more useful than NDVI and EVI for capturing seasonal changes in photosynthetic capacity, as the green and red reflectances are strongly influenced by changes in leaf pigments in this type of forest.  相似文献   

16.
In this article, we present empirical models for estimating daily surface water vapour pressure (e0), air temperature (Ta), and relative humidity (RH) over cloud-free land areas in peninsular Spain using Moderate Resolution Imaging Spectroradiometer (MODIS) and spatiotemporal variables. The models were obtained and validated using daily mean, maximum, and minimum e0, Ta, and RH data (year 2010) from 331 ground-level meteorological stations and the diurnal Terra-MODIS data in peninsular Spain, but the methodology can easily be extrapolated and used to obtain algorithms for other regions around the world. The best e0 models are based on total precipitable water (W) estimations obtained by MOD05 or IMAPP WVNIR products and the spatiotemporal variables of longitude (λ), distance to the coast (dcoast), and Julian day (JD). Other models based on Sobrino’s W algorithm or on Recondo’s e0 algorithm for Asturias (in northern Spain) were also tested. The best Ta models are based on land surface temperature (LST) obtained by the MOD11 LST or IMAPP LST products and on other remote-sensing variables, such as W and the normalized difference vegetation index (NDVI), and the spatiotemporal variables λ, JD, and height (h). Models based on Sobrino’s LST algorithms were also tested. RH can be derived directly from e0 and Ta or from models similar to those used to obtain e0 and Ta. Models based on the NASA standard products MOD05 and MOD11 LST are slightly better than those based on IMAPP products, but the advantage of IMAPP products for our purposes is that they can be generated in almost real time from the data obtained by the MODIS antenna at the University of Oviedo. IMAPP models obtain the following: R2 = 0.83-0.79-0.70 and RSE = 1.62-1.59-1.76 hPa for e0mean, e0max, and e0min; and R2 = 0.91-0.91-0.80 and RSE = 1.96-2.25-3.00 K for Tmean, Tmax, and Tmin. Worse results are obtained for RH: R2 = 0.49-0.39 and RSE = 7.21-9.75% for RHmin and RHmean, with no correlation found for RHmax. Model validations yield R2 and RSE values similar to those obtained in the models, with an RMSD = 1.86-1.99-2.21 hPa for e0mean, e0max, and e0min; an RMSD = 2.05-2.40-2.95 K for Tmean, Tmax, and Tmin; and RMSD = 8-11% for RHmin and RHmean. The bias is small in all cases: <0.2 hPa for e0, ≤0.1 K for Ta, and ≤ |1|% for RH. From the results of this article, we propose substituting the traditionally used RH variable with the e0 variable to be used as meteorological variable in environmental risk models such as, for example, fire risk models.  相似文献   

17.
Quantification of the magnitude of net terrestrial carbon (C) uptake, and how it varies inter-annually, is an important question with future potential sequestration influenced by both increased atmospheric CO2 and changing climate. However the assessment of differences in measured and modeled C accumulation is a challenging task due to the significant fine scale variation occurring in terrestrial productivity due to soil, climate and vegetation characteristics as well as difficulties in measuring carbon accumulation over large spatial areas. The Moderate Resolution Imaging Spectroradiometer (MODIS) offers a means of monitoring gross primary production (GPP), both spatially and temporally, routinely from space. However it is critical to compare and contrast the temporal dynamics of the C and water fluxes with those measured from ground-based networks, or estimated using physiological models. In this paper, using a number of approaches, our objective is to determine if any systematic biases exists in either the MODIS, or the modeled estimates of fluxes, relative to the measurements made over an evergreen, needleleaf temperate rainforest on Vancouver Island, Canada. Results indicate that 8-day GPP as predicted with a simple physiological model (3PGS), forced using local meteorology and canopy characteristics, matched measured fluxes very well (r2 = 0.86, p < 0.001) with no significant difference between eddy covariance (EC) and modeled GPP (p < 0.001). In addition, modeled water supply closely matched measured relative available soil water content at the site. Using canopy characteristics from the MODIS fraction of photosynthetically active radiation (fPAR) algorithm, slightly reduced the correspondence of the predictions due to a large number of unsuccessful retrievals (83%) due to sun angle, snow and cloud. Predictions of GPP based on the MODIS GPP algorithm, forced using local meteorology and canopy characteristics, were also highly correlated with EC measurements (r2 = 0.89, p < 0.001) however these estimates were biased under predicting GPP. Estimates of GPP based on the most recent MODIS reprocessing (collection 4.5) remained highly correlated (r2 = 0.88, p < 0.001) yet were also the most biased with the estimates being 30% less than the EC-measured GPP. Most of the variance in GPP at the site was explained by the absorbed photosynthetically active radiation. We also compared the nighttime respiration as measured over 2 years at the site with the minimum 8-day MODIS land surface temperature and found a significant relationship (r2 = 0.57), similar to other studies.  相似文献   

18.
The eddy covariance technique provides measurements of net ecosystem exchange (NEE) of CO2 between the atmosphere and terrestrial ecosystems, which is widely used to estimate ecosystem respiration and gross primary production (GPP) at a number of CO2 eddy flux tower sites. In this paper, canopy-level maximum light use efficiency, a key parameter in the satellite-based Vegetation Photosynthesis Model (VPM), was estimated by using the observed CO2 flux data and photosynthetically active radiation (PAR) data from eddy flux tower sites in an alpine swamp ecosystem, an alpine shrub ecosystem and an alpine meadow ecosystem in Qinghai-Tibetan Plateau, China. The VPM model uses two improved vegetation indices (Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI)) derived from the Moderate Resolution Imaging Spectral radiometer (MODIS) data and climate data at the flux tower sites, and estimated the seasonal dynamics of GPP of the three alpine grassland ecosystems in Qinghai-Tibetan Plateau. The seasonal dynamics of GPP predicted by the VPM model agreed well with estimated GPP from eddy flux towers. These results demonstrated the potential of the satellite-driven VPM model for scaling-up GPP of alpine grassland ecosystems, a key component for the study of the carbon cycle at regional and global scales.  相似文献   

19.
With the expectation of major shifts in climate, ecologists have focused attention on developing predictive relationships between current climatic conditions and species diversity. Climatic relationships appear best defined at regional rather than local levels. In reference to tree diversity, process-based models that express gross primary production (GPP) as an integrated function of climate seem most appropriate. Since 2000, NASA's MODIS satellite has provided composite data at 16-day intervals to produce estimates of GPP that compare well with direct measurements. The MODIS enhanced vegetation index (EVI), which is independent of climatic drivers, also appears a good surrogate to estimate seasonal patterns in GPP. In this paper we identified 65 out of 84 delineated ecoregions distributed across the contiguous U.S.A., within which sufficient (≥ 200) Federal Inventory and Analysis survey plots were available to predict the total number of tree species, which varied from 17 to 164. Four different formulations of EVI were compared: The annual maximum, the annual integrated, the growing season defined mid-point and growing season averaged values. The growing season mid-point EVI defined the beginning and end of the active growing season. In all formulations of EVI, a polynomial function accounted for about 60% of the observed variation in tree diversity, with additional precision increasing to 80% when highly fragmented ecoregions with < 50% forest cover were excluded. Maps comparing predicted with measured tree richness values show similar patterns except in the Pacific Northwest region where a major extinction of tree genera is known to have occurred during the late Pliocene. The extent that these relationships remain stable under a changing climate can be evaluated by determining if the MODIS climate-driven estimate of GPP continues to match well with EVI patterns and systematic resurveys of forest vegetation indicate that tree species are able to adjust rapidly to climatic variation.  相似文献   

20.
Moderate Resolution Imaging Spectroradiometer (MODIS) products and climate data collected from meteorological stations were used to characterize the spatial–temporal dynamics of gross primary productivity (GPP), evapotranspiration (ET), and water-use efficiency (WUE) in the Yangtze River Delta (YRD) region and the response of these three variables to meteorological factors. The seasonal patterns of GPP and WUE showed a bimodal distribution, with their peak values occurring in May and August, and April and October, respectively. By contrast, the seasonal variation of ET presented a unimodal pattern with its maximum in July or August. The spatial distribution of ET and GPP was similar to higher values occurring in the south. From 2001 to 2012, GPP in the eastern YRD decreased, while GPP in the western part increased. In comparison, over the 12 years, ET in the northern part of YRD decreased, while ET in the southern part increased. The spatial distribution and spatial variation of WUE were both similar to those of GPP. This implies that the changes in WUE are primarily controlled by the variations in GPP. The annual average WUE over vegetation types followed the order of: evergreen broadleaf forest (1.95 g C kg?1 H2O) > deciduous broadleaf forest (1.87 g C kg?1 H2O) > evergreen needle leaf forest (1.70 g C kg?1 H2O) > deciduous needle leaf forest (1.68 g C kg?1 H2O) > grassland (1.66 g C kg?1 H2O) > cropland (1.61 g C kg?1 H2O). Both GPP and ET increased with increasing annual mean temperature (Ta) and annual mean precipitation across all of the plant function types. WUE decreased as vapour pressure deficit (VPD) increased in all of the biomes. Interestingly, the relationship between WUE and VPD was the most significant in broadleaf forest. Whether this phenomenon is universal should be investigated in future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号