首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Knowledge of snow cover is essential to understanding the global water and energy cycle. Thresholding the normalized difference snow index (NDSI) image is a method frequently used to map snow cover from remotely sensed data. However, the threshold is dependent on the scenario and needs to be determined accordingly. In this study, nine automatic thresholding methods were tested on the NDSI. Comparisons of the automatic thresholding methods, optimal threshold, and support vector machine (SVM) classification show that Otsu's and Nie's methods appear to be the most robust among the nine automatic thresholding methods, achieving comparable accuracies with the latter two approaches. In addition, NDSI from the digital number (DN) can be an efficient substitution for NDSI obtained from atmospherically or topographically corrected data, with similar accuracy.  相似文献   

2.
Estimates of mean tree size and cover for each forest stand from an invertible forest canopy reflectance model are part of a new forest vegetation mapping system. Image segmentation defines stands which are sorted into general growth forms using per-pixel image classifications. Ecological models based on terrain relations predict species associations for the conifer, hardwood, and brush growth forms. The combination of the model-based estimates of tree size and cover with species associations yields general-purpose vegetation maps useful for a variety of land management needs. Results of timber inventories in the Tahoe and Stanislaus National Forests indicate the vegetation maps form a useful basis for stratification. Patterns in timber volumes for the strata reveal that the cover estimates are more reliable than the tree size estimates. A map accuracy assessment of the Stanislaus National Forest shows high overall map accuracy and also illustrates the problems in estimating tree size.  相似文献   

3.
This Letter describes a method for using Landsat Thematic Mapper ( TM) data to monitor vegetation growth on a large burnt area in northern Sardinia. Five different vegetational classes, characteristic of the Mediterranean region are described in which green biomass increased from the herbaceous to the arbustive and arboreal. For each class the values of the infrared index II ( TM4— TM5)( TM4-f-TM5 ) were calculated. The ability of this index to enhance green biomass differences made it appropriate to the monitoring of post-fire regrowth.  相似文献   

4.

The Changbai Mountain Natural Reserve (2000 km 2 ), north-east China, is a very important ecosystem representing the temperate biosphere. The cover types were derived by using multitemporal Landsat TM imagery, which was modified with DEM data on the relationship between vegetation distribution and elevation. It was classified into 20 groups by supervised classification. By comparing the results of the classification of different band combinations, bands 4 and 5 of an image from 18 July 1997 and band 3 of an image from 22 October 1997 were used to make a false colour image for the final output, a vegetation map, which showed the best in terms of classification accuracy. The overall accuracy by individual images was less than 70%, while that of the multitemporal classification was higher than 80%. Further, on the basis of the relationship of vegetation distribution and elevation, the accuracy of multitemporal classification was raised from 85.8 to 89.5% by using DEM. Bands 4 and 5 showed a high ability for discriminating cover types. Images acquired in late spring and mid-summer were recognized better than other seasons for cover type identification. NDVI and band ratio of B4/B3 proved useful for cover type discrimination, but were not superior to the original spectral bands. Other band ratios like B5/B4 and B7/B5 were less important for improving classification accuracy. The changes of spectral reflectance and NDVI with season were also analysed with 10 images ranging from 1984 to 1997. Seperability of images in terms of classification accuracy was high in late spring and summer, and decreased towards winter. There were five vegetation zones on the mountain, from the base to the peak: deciduous forest zone, mixed forest zone, conifer forest zone, birch forest zone and tundra zone. Spruce-fir conifer dominated forest was the most dominant vegetation (33%), followed by mixed forest (26%), Korean pine forest (8%) and mountain birch forest (5%).  相似文献   

5.
The purpose of this study was to monitor the impact of mining in the Zambian Copperbelt, specifically using dambos as an environmental indicator for pollution. Data fusion using a Brovey transform was used for combining speckle filtered radar data with optical data to effectively map natural dambos and dambos that have degraded due to human impact. Comparative analysis of raw images and fusion product reveals that, whereas natural dambos show low values on Landsat reflective bands and low backscatter response in SAR imagery, degraded dambos have mixed spectral responses. Degraded dambos are difficult to identify in either optical or SAR images alone, but a fusion product highlights complimentary spectral information, making these environmental indicators uniquely identifiable.  相似文献   

6.
Debate over a forestry incentive scheme in the Gisborne district, New Zealand, highlighted the need for up to date information on the vegetation cover. Maps of vegetation at a scale of 1:100 000 were produced by automatically classifying Landsat Thematic Mapper (TM) imagery. The classified imagery was compared with existing vegetation information (20-years-old) from a GIS database to identify gross errors. Through field checking the discrepancies were identified as either real changes or errors in classification. Correction of errors increased the overall classification accuracy from 84 to 90 per cent.

The digital vegetation map was intersected with land use suitability data to provide a two-way table that provided land managers with quantitative information suitable for making regional planning decisions. Although the 90 per cent accuracy is high enough to permit the calculation of vegetation areas and to achieve an adequate representation of regional vegetation patterns, it is not high enough to permit the digital vegetation map to be used as a vegetation database where point queries are important.  相似文献   

7.
Multitemporal remote sensing was used to map and quantify rangeland degradation in communal grazing lands of Lehurutshe district, northwestern South Africa. Based on established theory that veldt degradation ultimately results in bare land in addition to loss and replacement of palatable rangeland species, rangeland bare land was used as an indicator of degradation, primarily due to lack of palatable rangeland species spectral signatures. Using a January 1989 image as the base year, in which the rangelands were healthier, January 1995 and 2005 Landsat Thematic Mapper (TM) images were used for mapping and quantifying degradation, with the hypothesized degradation status that bare land in the rangelands would not have emerging grass just after the start of the summer rains. Image processing involved geometric registration, hybrid classification and geographic information system (GIS) overlay analysis. The results indicate moderate rangeland degradation, up to 4% area, particularly in the district's more inhabited south. Although the amount of degradation is moderate, the degradation has significant localized effects in this semiarid environment. Remote sensing techniques appear vital for rapid rangeland and other multitemporal spatial analyses in the area and the southern Africa subregion in general, to be taken advantage of with the launch of South Africa's environmental satellite.  相似文献   

8.
9.

Meteorological satellites are appropriate for operational applications related to early warning, monitoring and damage assessment of forest fires. Environmental or resources satellites, with better spatial resolution than meteorological satellites, enable the delineation of the affected areas with a higher degree of accuracy. In this study, the agreement of two datasets, coming from National Oceanic and Atmospheric Administration/Advanced Very High Resolution Radiometer (NOAA/AVHRR) and Landsat TM, for the assessment of the burned area, was investigated. The study area comprises a forested area, burned during the forest fire of 21-24 July 1995 in Penteli, Attiki, Greece. Based on a colour composite image of Landsat TM a reference map of the burned area was produced. The scatterplot of the multitemporal Normalized Difference Vegetation Index (NDVI) images, from both Landsat TM and NOAA/AVHRR sensors, was used to detect the spectral changes due to the removal of vegetation. The extracted burned area was compared to the digitized reference map. The synthesis of the maps was carried out using overlay techniques in a Geographic Information System (GIS). It is illustrated that the NOAA/AVHRR NDVI accuracy is comparable to that from Landsat TM data. As a result NOAA/AVHRR data can, operationally, be used for mapping the extent of the burned areas.  相似文献   

10.
Building (street) orientation is one of the important parameters for estimation of building bulk size (height and width) from corner reflector effects using remotely sensed radar image data. However, this parameter is difficult to obtain directly from radar data. Other sensor data such as optical and near infrared data may provide possibilities. This paper reports on a method for detection and recognition of street orientation in remotely sensed Landsat TM and/or SPOT HRV imagery. The methodology includes two steps: (1) multiscale wavelet transform techniques are employed to detect edges; (2) the predominant street orientation for each 20 × 20 pixel block is then recognised by applying a simple algorithm to the detected edges which contain most of the information about street orientations.  相似文献   

11.
Forest disturbances influence many landscape processes, including changes in microclimate, hydrology, and soil erosion. We analyzed the spectral response and temporal progress of two types of disturbances of spruce forest (bark beetle outbreak and clear-cuts) in the central part of Šumava Mountains at the border between the Czech Republic and Germany, Central Europe. The bark beetle (Ips typographus [L.]) outbreak in this region in the last 20 years resulted in regional-scale spruce forest decay. Clear-cutting was done here to prevent further bark-beetle propagation in the buffer zones.The aim of the study is to identify the differences in spectral response between the two types of forest disturbances and their temporal dynamics. General trends were analyzed throughout the study area, with sampled disturbance areas selected to assess the relationship between field vegetation data and their spectral response. Thirteen Landsat TM/ETM+ scenes from 1985 to 2007 were used for the assessment. The following spectral indices were estimated: NDMI, Tasseled Cap (Brightness, Greenness, Wetness), DI, and DI′. The DI′, Wetness, and Brightness indices show the highest sensitivity to forest disturbance for both disturbance types (clear-cuts and bark beetle outbreak). The multitemporal analysis distinguished three different stages of development. The highest spectral differences between the clear-cuts and the bark beetle disturbances were found in the period between 1996 and 2004 with increased levels of forest disturbance (repeated measures ANOVA, Scheffé post hoc test; p ≤ 0.05). Clear-cut disturbance resulted in significantly higher spectral differences from the original forest and occurred as a more discrete event in comparison to bark beetle outbreak.  相似文献   

12.
Hybrid classification of 11 Landsat TM quarter images ( circa 81000km2) was performed in an attempt to locate and quantify areas of sand transported by wind in Lapland. The data were employed in the k-means clustering algorithm after grey-level thresholding, and the resulting normal distribution parameters were used in a maximum likelihood classification. In order to achieve an unbiased classification result, post-classificational manual interpretation was used for selecting the best possible class combination with the aid of ground data and field checks. Wind activity was found on early Holocene anchored inland dunes, glaciofluvial deposits,and in localised areas on fell slopes.Aeolian processes are mainly operative in the mountain birch woodland and treeless tundra north of the Scots Pine forest zone. Sixty-three current localities with a total area of deflated surfaces of circa 10km2 (1000ha) were identified in the study region.  相似文献   

13.
An analysis of tropical rain forest covering Amazonian lowlands has highlighted a systematic across-path, east–west radiometric gradient within Landsat TM imagery. Visual assessment of 45 and quantitative analysis of 20 Amazonian Landsat-4 and -5 TM scenes show that the gradient is band dependent and pronounced in visible light bands 1 to 3 but significant also in IR bands 4 to 7. The results show that the scan line location of a pixel explains a considerable amount of the DN variation of forests in the width of the entire scene (B1: 70%, B2: 52%, B3: 44%, B4: 34%, B5: 46%, B7: 39%). In digital numbers, the difference between east and west side of a scene may be small (9, 4, 3, 10, 9, 3, respectively) but these differences become significant if the images are to be mosaicked, or the data are used for mapping relatively subtle differences of natural forests. Apparently, the gradient is a result of at least three factors: 1) shadows caused by the undulating terrain, 2) anisotropic reflectance of the varying surfaces, and 3) atmospheric scattering. The phenomenon becomes more significant when the sun is high and the scanning line is close to solar azimuth direction—a condition more easily encountered in lower latitudes of the earth.  相似文献   

14.
15.
Information on the size and distribution of various zones in a salt farm is critical to salt farm management and estimation of salt yield. The ability of neural network and maximum likelihood classifiers to classify spectrally uniform water bodies with a distinct boundary in a salt farm is comparatively studied in this paper for the Taibei Salt Field, Jiangsu Province, East China using Landsat Thematic Mapper (TM) data. In a pre‐run classification of general land covers, the salt farm was mapped 84% correctly using the neural network method, slightly higher than the 76% achieved with the maximum likelihood classifier. In another separate neural network classification the salt farm was mapped further into three zones of evaporation, condensation, and crystallization at a producer's accuracy of 76%, 84%, and 86%, respectively, with the optimum classification settings. Such a detailed classification was not possible with the maximum likelihood method. It is concluded that the neural network is superior to the maximum likelihood method for detailed mapping of the Taibei Salt Field where salty water bodies are spectrally uniform and spatially extensive on the image with clear‐cut boundaries among them.  相似文献   

16.
This research aims to improve land-cover classification accuracy in a moist tropical region in Brazil by examining the use of different remote sensing-derived variables and classification algorithms. Different scenarios based on Landsat Thematic Mapper (TM) spectral data and derived vegetation indices and textural images, and different classification algorithms - maximum likelihood classification (MLC), artificial neural network (ANN), classification tree analysis (CTA), and object-based classification (OBC), were explored. The results indicated that a combination of vegetation indices as extra bands into Landsat TM multispectral bands did not improve the overall classification performance, but the combination of textural images was valuable for improving vegetation classification accuracy. In particular, the combination of both vegetation indices and textural images into TM multispectral bands improved overall classification accuracy by 5.6% and kappa coefficient by 6.25%. Comparison of the different classification algorithms indicated that CTA and ANN have poor classification performance in this research, but OBC improved primary forest and pasture classification accuracies. This research indicates that use of textural images or use of OBC are especially valuable for improving the vegetation classes such as upland and liana forest classes having complex stand structures and having relatively large patch sizes.  相似文献   

17.
The tropical wetland environments of northern Australia have ecological, social, cultural and economic values. Additionally, these areas are relatively pristine compared to the many other wetland environments in Australia, and around the world, that have been extensively altered by humans. However, as the remote northern coastline of Australia becomes more populated, environmental problems are beginning to emerge that highlight the need to manage the tropical wetland environments. Lack of information is currently considered to be a major factor restricting the effective management of many ecosystems and for the expansive wetlands of the Northern Territory, this is especially the case, as these areas are generally remote and inaccessible. Remote sensing is therefore an attractive technique for obtaining relevant information on variables such as land cover and vegetation status. In the current study, Landsat TM, SPOT (XS and PAN) and large-scale, true-colour aerial photography were evaluated for mapping the vegetation of a tropical freshwater swamp in Australia's Top End. Extensive ground truth data were obtained, using a helicopter survey method. Fourteen cover types were delineated from 1:15 000 air photos (enlarged to 1:5000 in an image processing system) using manual interpretation techniques, with 89% accuracy. This level of detail could not be extracted from any of the satellite image data sets, with only three broad land-cover types identified with accuracy above 80%. The Landsat TM and SPOT XS data provided similar results although superior accuracy was obtained from Landsat, where the additional spectral information appeared to compensate in part for the coarser spatial resolution. Two different classification algorithms produced similar results.  相似文献   

18.
Studies over the past 25 years have shown that measurements of surface reflectance and temperature (termed optical remote sensing) are useful for monitoring crop and soil conditions. Far less attention has been given to the use of radar imagery, even though synthetic aperture radar (SAR) systems have the advantages of cloud penetration, all-weather coverage, high spatial resolution, day/night acquisitions, and signal independence of the solar illumination angle. In this study, we obtained coincident optical and SAR images of an agricultural area to investigate the use of SAR imagery for farm management. The optical and SAR data were normalized to indices ranging from 0 to 1 based on the meteorological conditions and sun/sensor geometry for each date to allow temporal analysis. Using optical images to interpret the response of SAR backscatter (σo) to soil and plant conditions, we found that SAR σo was sensitive to variations in field tillage, surface soil moisture, vegetation density, and plant litter. In an investigation of the relation between SAR σo and soil surface roughness, the optical data were used for two purposes: (1) to filter the SAR images to eliminate fields with substantial vegetation cover and/or high surface soil moisture conditions, and (2) to evaluate the results of the investigation. For dry, bare soil fields, there was a significant correlation (r2=.67) between normalized SAR σo and near-infrared (NIR) reflectance, due to the sensitivity of both measurements to surface roughness. Recognizing the limitations of optical remote sensing data due to cloud interference and atmospheric attenuation, the findings of this study encourage further studies of SAR imagery for crop and soil assessment.  相似文献   

19.
The floodplain forests bordering the Amazon River have outstanding ecological, economic, and social importance for the region. However, the original distribution of these forests is not well known, since they have suffered severe degradation since the 16th century. The previously published vegetation map of the Amazon River floodplain (Hess et al., 2003), based on data acquired in 1996, shows enormous difference in vegetation cover classes between the regions upstream and downstream of the city of Manaus. The upper floodplain is mostly covered by forests, while the lower floodplain is predominantly occupied by grasses and shrubs.This study assesses deforestation in the Lower Amazon floodplain over a ~ 30 year period by producing and comparing a historical vegetation map based on MSS/Landsat images acquired in the late 1970s with a recent vegetation map produced from TM/Landsat images obtained in 2008. The maps were generated through the following steps: 1) normalization and mosaicking of images for each decade; 2) application of a linear mixing model transformation to produce vegetation, soil and shade fraction-images; and 3) object-oriented image analysis and classification. For both maps, the following classes were mapped: floodplain forest, non-forest floodplain vegetation, bare soil and open water. The two maps were combined using object-level Boolean operations to identify time transitions among the mapped classes, resulting in a map of the land cover change occurred over ~ 30 years. Ground information collected at 168 ground points was used to build confusion matrices and calculate Kappa indices of agreement. A survey strategy combining field observations and interviews allowed the collection of information about both recent and historical land cover for validation purposes. Kappa values (0.77, 0.75 and 0.75) indicated the good quality of the maps, and the error estimates were used to adjust the estimated deforested area to a value of 3457 km2 ± 1062 km2 (95% CI) of floodplain deforestation over the ~ 30 years.  相似文献   

20.
Hyperspectral images are widely employed for geological mapping because of their high spectral resolution. In this article, we develop the mixture-tuned matched filtering (MTMF) method, which can provide highly accurate mapping using the minimum ground-based data. This method is applied in the Malayer region of western Iran, which is composed of various lithological units. MTMF and minimum noise fraction (MNF) methods were applied to a Thematic Mapper 5 (TM5) image, and minimum number of training data based on field observation were used to produce a suitable false-colour image in which locations of lithological units were given. Finally, classification of six desired lithological units was done by the maximum likelihood classification (MLC) method. Results of lithological mapping show that although minimum ground-based data were used, the accuracy of classification is 82.3%. In addition, evaluation of the above-mentioned false-colour image reveals that the algorithm presented enhances the separability of units in the image by 7.3%, which can partially compensate for the low spectral resolution of the image used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号