首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evaluation of an Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image of the Mountain Pass, California area indicates that several important lithologic groups can be mapped in areas with good exposure by using spectral-matching techniques. The three visible and six near-infrared bands, which have 15-m and 30-m resolution, respectively, were calibrated by using in situ measurements of spectral reflectance. Calcitic rocks were distinguished from dolomitic rocks by using matched-filter processing in which image spectra were used as references for selected spectral categories. Skarn deposits and associated bright coarse marble were mapped in contact metamorphic zones related to intrusion of Mesozoic and Tertiary granodioritic rocks. Fe-muscovite, which is common in these intrusive rocks, was distinguished from Al-muscovite present in granitic gneisses and Mesozoic granite.Quartzose rocks were readily discriminated, and carbonate rocks were mapped as a single broad unit through analysis of the 90-m resolution, five-band surface emissivity data, which is produced as a standard product at the EROS Data Center. Three additional classes resulting from spectral-angle mapper processing ranged from (1) a broad granitic rock class (2) to predominately granodioritic rocks and (3) a more mafic class consisting mainly of mafic gneiss, amphibolite and variable mixtures of carbonate rocks and silicate rocks.  相似文献   

2.
The purpose of atmospheric correction is to produce more accurate surface reflectance and to potentially improve the extraction of surface parameters from satellite images. To achieve this goal the influences of the atmosphere, solar illumination, sensor viewing geometry and terrain information have to be taken into account. Although a lot of information from satellite imagery can be extracted without atmospheric correction, the physically based approach offers advantages, especially when dealing with multitemporal data and/or when a comparison of data provided by different sensors is required. The use of atmospheric correction models is limited by the need to supply data related to the condition of the atmosphere at the time of imaging. Such data are not always available and the cost of their collection is considerable, hence atmospheric correction is performed with the use of standard atmospheric profiles. The use of these profiles results in a loss of accuracy. Therefore, site-dependent databases of atmospheric parameters are needed to calibrate and to adjust atmospheric correction methods for local level applications. In this article, the methodology and results of the project Adjustment of Atmospheric Correction Methods for Local Studies: Application in ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) (ATMOSAT) for the area of Crete are presented. ATMOSAT aimed at comparing several atmospheric correction methods for the area of Crete, as well as investigating the effects of atmospheric correction on land cover classification and change detection. Databases of spatio-temporal distributions of all required input parameters (atmospheric humidity, aerosols, spectral signatures, land cover and elevation) were developed and four atmospheric correction methods were applied and compared. The baseline for this comparison is the spatial distribution of surface reflectance, emitted radiance and brightness temperature as derived by ASTER Higher Level Products (HLPs). The comparison showed that a simple image based method, which was adjusted for the study area, provided satisfactory results for visible, near infrared and short-wave infrared spectral areas; therefore it can be used for local level applications. Finally, the effects of atmospheric correction on land cover classification and change detection were assessed using a time series of ASTER multispectral images acquired in 2000, 2002, 2004 and 2006. Results are in agreement with past studies, indicating that for this type of application, where a common radiometric scale is assumed among the multitemporal images, atmospheric correction should be taken into consideration in pre-processing.  相似文献   

3.
The urban heat island phenomenon occurs as a result of the mixed effects of anthropogenic heat discharge, increased use of artificial impervious surface materials, and decreased vegetation cover. These factors modify the heat balance at the land surface and eventually raise the atmospheric temperature. It is important to quantify the surface heat balance in order to estimate the contributions of these factors. The present authors propose the use of storage heat flux to represent the heat flux between the land surface and the inside of the canopy for the heat balance analysis based on satellite remote sensing data. Surface heat fluxes were estimated around the city of Nagoya, Japan using Terra ASTER data and meteorological data. Seasonal and day-night differences in heat balance were compared using ASTER data acquired in the daytime on July 10, 2000, and January 2, 2004 and in the nighttime on September 26, 2003. In the central business and commercial districts, the storage heat flux was higher than those in the surrounding residential areas. In particular, in winter, the storage heat flux in the central urban area was 240 to 290 W m− 2, which was much larger than the storage heat fluxes in residential areas, which ranged from 180 to 220 W m− 2. Moreover, the negative storage heat flux in the central urban area was greater at night. This tendency implies that the urban surface stores heat during the daytime and discharges it at night. Extremely large negative storage heat flux occurred primarily in the industrial areas for both daytime and nighttime as a result of the enormous energy consumption by factories.  相似文献   

4.
On 8 October 2005, a devastating earthquake struck northern Pakistan and several parts of Pakistani- and Indian-controlled Kashmir. The severely hit areas lie in close proximity to the most tectonically active region of the western Himalayas. The earthquake destroyed close to 400 000 houses and over 75 000 people lost their lives. The intensity of the earthquake was such that it triggered widespread landslides, which caused considerable destruction of the area's forests, and blocked the mountain roads and rivers. Satellite imagery-based analysis can be effectively used to provide critical geologic information for determining the causes of earthquakes, mapping of faults and lineaments, as well as for hazards and damage assessment mapping. In this study, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery acquired on 27 October 2005 was analysed to assess earthquake-induced land cover changes in severely hit areas. Image analysis techniques including intensity hue and saturation (IHS), principal component analysis (PCA), Normalized Difference Vegetation Index (NDVI) and Iterative Self-Organizing Data Analysis Technique (ISODATA) were applied on VNIR–SWIR bands of ASTER for the purpose of identification and mapping of landslides triggered by the earthquake in areas of northern Pakistan and Pakistani-controlled Kashmir. The techniques proved effective in identifying freshly exposed surfaces on mountain slopes, landslide scars and debris deposits. Accurate identification and mapping of landslides and slope failures can play an important role in post-earthquake damage assessment and hazards mapping in earthquake-prone mountainous areas.  相似文献   

5.
Ashfall and pyroclastic flows from the large eruption of June 1991 destroyed much of the vegetation on the flanks of Mt. Pinatubo. Subsequent vegetation recovery has helped stabilize slopes and reduce debris flow hazard. In this project, visible and near-infrared (VNIR) satellite imagery from the advanced spaceborne thermal emission and reflection radiometer (ASTER) captured at a similar time of year in 2001, 2004 and 2008 were used to quantify vegetation recovery within 22 upland watersheds on the mountain, 10–16 years after the eruption took place. Differences in the normalized difference vegetation index (NDVI) derived from these images were used to measure the areal extent of losses and gains in ground cover and derive average net rates of change in ground cover. The success of this approach was dependent on post-processing ASTER imagery to correct for the effects of variation in satellite-sun geometry and vegetation reflectance and to calibrate and adjust the derived NDVI images for the influence of different atmospheric conditions at the time of image capture. All watersheds showed a variable pattern of losses and gains in vegetation and ground cover. Losses were related to shifting cultivation practices and gully and channel migration, and these amounted to 1–12% of watershed areas. Gains were related to revegetation of pyroclastic flows, recent channel terraces, abandoned gardens and areas of burnt vegetation, and these amounted to 3–45% of watershed areas. Consistent overall net gains in ground cover were observed in all watersheds, with the average NDVI increasing by up to 0.074 over each consecutive 3-year period. The rates of change in NDVI were used to derive a vegetation recovery curve from bare ground. The result showed that it will take approximately 50 years for hillslopes to regain a dense vegetative cover in this climate. This supports published findings which indicate rapid recovery of vegetation in tropical environments following such large volcanic eruptions. Results additionally showed that the trajectory of change and the speed of recovery were influenced by terrain type, geology, watershed morphology and the activity of erosion and depositional processes. Prior to 2001, revegetation had been fastest on mountain slopes that helped protect vegetation from the effects of eruption. Gains in ground cover are now greatest in areas that were most impacted by the eruption.  相似文献   

6.
Lack of reliable and up-to-date maps relating to land cover (among other themes) constitute a weakness in land resource surveys and cause costly failures to many forest rehabilitation projects in the tropics. This study evaluated the utility of satellite imagery for land cover mapping for forest rehabilitation planning in a case study in Mindoro, Philippines. Using Landsat TM data, visual and digital image processing techniques were performed using the GRID module of ARC/INFO and the microBRIAN image processing software. Crown cover density is found as the most useful and the most important detail of information the image could provide. Detailed mapping at the species and forest type levels is unreliable, as is the delineation of water bodies and some cultural features in rugged terrain. Clustering of the NDVI image is found more applicable in producing land cover maps depicting crown cover classes than classifying raw TM-3, -4, and-5.  相似文献   

7.
8.
Biomass and leaf area index (LAI) are important variables in many ecological and environmental applications. In this study, the suitability of visible to shortwave infrared advanced spaceborne thermal emission and reflection radiometer (ASTER) data for estimating aboveground tree and LAI in the treeline mountain birch forests was tested in northernmost Finland. The biomass and LAI of the 128 plots were surveyed, and the empirical relationships between forest variables and ASTER data were studied using correlation analysis and linear and non‐linear regression analysis. The studied spectral features also included several spectral vegetation indices (SVI) and canonical correlation analysis (CCA) transformed reflectances. The results indicate significant relationships between the biomass, LAI and ASTER data. The variables were predicted most accurately by CCA transformed reflectances, the approach corresponding to the multiple regression analysis. The lowest RMSEs were 3.45 t ha?1 (41.0%) and 0.28 m2m?2 (37.0%) for biomass and LAI respectively. The red band was the band with the strongest correlation against the biomass and LAI. SR and NDVI were the SVIs with the strongest linear and non‐linear relationships. Although the best models explained about 85% of the variation in biomass and LAI, the undergrowth vegetation and background reflectance are likely to affect the observed relationships.  相似文献   

9.
Wildland fires are an annually recurring phenomenon in many terrestrial ecosystems. Accurate burned area estimates are important for modeling fire-induced trace gas emissions and rehabilitating post-fire landscapes. High spatial and spectral resolution MODIS/ASTER (MASTER) airborne simulator data acquired over three 2007 southern California burns were used to evaluate the sensitivity of different spectral indices at discriminating burned land shortly after a fire. The performance of the indices, which included both traditional and new band combinations, was assessed by means of a separability index that provides an assessment of the effectiveness of a given index at discriminating between burned and unburned land. In the context of burned land applications results demonstrated (i) that the highest sensitivity of the longer short wave infrared (SWIR) spectral region (1.9 to 2.5 μm) was found at the band interval from 2.31 to 2.36 μm, (ii) the high discriminatory power of the mid infrared spectral domain (3 to 5.5 μm) and (iii) the high potential of emissivity data. As a consequence, a newly proposed index which combined near infrared (NIR), longer SWIR and emissivity outperformed all other indices when results were averaged over the three fires. Results were slightly different between land cover types (shrubland vs. forest-woodland). Prior to use in the indices the thermal infrared data were separated into temperature and emissivity to assess the benefits of using both temperature and emissivity. Currently, the only spaceborne sensor that provides moderate spatial resolution (< 100 m) temperature and emissivity data is the Advanced Spaceborne and Thermal Emission Radiometer (ASTER). Therefore, our findings can open new perspectives for the utility of future sensors, such as the Hyperspectral Infrared (HyspIRI) sensor. However, further research is required to evaluate the performance of the newly proposed band combinations in other vegetation types and different fire regimes.  相似文献   

10.
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a research facility instrument launched on NASA's Terra spacecraft in December 1999. Spectral indices, a kind of orthogonal transformation in the five-dimensional space formed by the five ASTER short-wave-infrared (SWIR) bands, were proposed for discrimination and mapping of surface rock types. These include Alunite Index, Kaolinite Index, Calcite Index, and Montmorillonite Index, and can be calculated by linear combination of reflectance values of the five SWIR bands. The transform coefficients were determined so as to direct transform axes to the average spectral pattern of the typical minerals. The spectral indices were applied to the simulated ASTER dataset of Cuprite, Nevada, USA after converting its digital numbers to surface reflectance. The resultant spectral index images were useful for lithologic mapping and were easy to interpret geologically. An advantage of this method is that we can use the pre-determined transform coefficients, as long as image data are converted to surface reflectance.  相似文献   

11.
Using a linear unconstrained least squares (LSS) method and a non-linear artificial neural network (ANN) algorithm, we conducted a spectral mixture analysis to the Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) image data in Yokohama city, Japan, for mapping the abundance of the urban surface components. ASTER is a newly developed research facility instrument. The regions of interest of four endmembers (Vegetation, Soil, High/Low albedo impervious surfaces) were determined in Maximum Noise Fraction (MNF) feature spaces. The spectral signatures of the four endmembers were then extracted from the ASTER VNIR (15-m resolution) and SWIR (30-m resolution) imagery by referring to high spatial resolution airborne imagery (The Airborne Imaging Spectrometer, AISA, with 2-m resolution) and land use/land cover map for training and testing the LSS and ANN algorithms. Experimental results indicate that ASTER VNIR and SWIR image data are capable of mapping the abundances of urban surface components with a reasonable accuracy and that the ANN outperforms the unconstrained LSS in this spectral mixture analysis.  相似文献   

12.
Land use/land cover change, particularly that of tropical deforestation and forest degradation, has been occurring at an unprecedented rate and scale in Southeast Asia. The rapid rate of economic development, demographics and poverty are believed to be the underlying forces responsible for the change. Accurate and up-to-date information to support the above statement is, however, not available. The available data, if any, are outdated and are not comparable for various technical reasons. Time series analysis of land cover change and the identification of the driving forces responsible for these changes are needed for the sustainable management of natural resources and also for projecting future land cover trajectories. We analysed the multi-temporal and multi-seasonal NOAA Advanced Very High Resolution Radiometer (AVHRR) satellite data of 1985/86 and 1992 to (1) prepare historical land cover maps and (2) to identify areas undergoing major land cover transformations (called ‘hot spots’). The identified ‘hot spot’ areas were investigated in detail using high-resolution satellite sensor data such as Landsat and SPOT supplemented by intensive field surveys. Shifting cultivation, intensification of agricultural activities and change of cropping patterns, and conversion of forest to agricultural land were found to be the principal reasons for land use/land cover change in the Oudomxay province of Lao PDR, the Mekong Delta of Vietnam and the Loei province of Thailand, respectively. Moreover, typical land use/land cover change patterns of the ‘hot spot’ areas were also examined. In addition, we developed an operational methodology for land use/land cover change analysis at the national level with the help of national remote sensing institutions.  相似文献   

13.
The possibility of using the Syst@me Probatoire de l'Observation de la Terre (SPOT)-VEGETATION (VGT) data for global burned area mapping with a single algorithm was investigated. Using VGT images from south-eastern Africa, the Iberian Peninsula and south-eastern Siberia/north-eastern China, we analysed the variability of the spectral signature of burned areas and its relationship with land cover, and performed the selection of the best variables for burned area mapping. The results show that in grasslands and croplands, near-infrared (NIR) and short-wave infrared (SWIR) reflectance always decreases as a result of fire. In forests and woodlands, there may occur a simultaneous decrease of SWIR and NIR or an increase of SWIR and a decrease of NIR. Burning of green vegetation (high values of the Normalized Difference Vegetation Index (NDVI)) tends to result in an increase of the SWIR. The best variables for burned area mapping are different in each region. Only the NIR allows a good discrimination of burned areas in all study areas. We derived a logistic regression model for multi-temporal burned area mapping in tropical, temperate and boreal regions, which handles the spectral variability of burned areas dependent on the type of vegetation. The results underline the feasibility of a single model for global burned area mapping.  相似文献   

14.
Mapping of debris-covered glaciers using remote-sensing techniques is recognized as one of the greatest challenges for generating glacier inventories and automated glacier change analysis. The use of visible (VIS) and near-infrared (NIR) bands does not provide sufficient continual information to detect debris-covered ice with remote-sensing data. This article presents a semi-automated mapping method for the debris-covered glaciers of the Garhwal Himalayas based on an Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) digital elevation model (DEM) and thermal data. Morphometric parameters such as slope, plan curvature and profile curvature were computed by means of the ASTER DEM and organized in similar surface groups using cluster analysis. A thermal mask was generated from a single band of an ASTER thermal image, while the clean-ice glaciers were identified using a band ratio based on ASTER bands 3 and 4. Vector maps were drawn up from the output of the cluster analysis, the thermal mask and the band ratio mask for the preparation of the final outlines of the debris-covered glaciers using geographic information system (GIS) overlay operations. The semi-automated mapped debris-covered glacier outline of Gangotri Glacier derived from 2006 ASTER data varied by about 5% from the manually outlined debris-covered glacier area of the Cartosat-1 high-resolution image from the same year. By contrast, outlines derived from the method developed using the 2001 ASTER DEM and Landsat thermal data varied by only 0.5% from manually digitized outlines based on Indian Remote Sensing Satellite (IRS)-1C panchromatic (PAN) data. We found that post-depositional sedimentation by debris flow/mass movement was a great hindrance in the fully automated mapping of debris-covered glaciers in the polygenetic environment of the Himalayas. In addition, the resolution of ASTER stereo data and thermal band data limits the automated mapping of small debris-covered glaciers with adjacent end moraine. However, the results obtained for Gangotri Glacier confirm the strong potential of the approach presented.  相似文献   

15.
The study area is located in the Kerman magmatic arc in southern Iran, which is known for its world-class porphyry-type deposits. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Advanced Land Imager (ALI) visible–near-infrared to shortwave-infrared bands were used to investigate the spectral discrimination of hydrothermally altered rocks based on their mineral assemblages. Band ratioing, directed principal component analysis (DPCA), and the Spectral Angle Mapper (SAM) were applied on ASTER and ALI data for separating ferric iron-poor from ferric iron-rich phyllic alteration zones. The individual principal component images through DPCA could detect specific alteration zones dominated by minerals such as iron oxides, sericite, kaolinite, chlorite, and epidote. The phyllic zone associated with copper mineralization is generally rich in iron oxide minerals at the surface, which can be especially detected by ALI. The altered areas were sampled and studied using X-ray diffraction analysis, spectral measurements, chemical analysis, and thin-section studies. The results of this analysis have shown that more than 90% of the known copper mineralization falls within the ASTER/ALI-mapped alteration areas. These data can be useful for mapping alteration minerals related to porphyry deposits in other regions with similar geological settings.  相似文献   

16.
The Reko Diq, Pakistan mineralized study area, approximately 10 km in diameter, is underlain by a central zone of hydrothermally altered rocks associated with Cu-Au mineralization. The surrounding country rocks are a variable mixture of unaltered volcanic rocks, fluvial deposits, and eolian quartz sand. Analysis of 15-band Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data of the study area, aided by laboratory spectral reflectance and spectral emittance measurements of field samples, shows that phyllically altered rocks are laterally extensive, and contain localized areas of argillically altered rocks.In the visible through shortwave-infrared (VNIR + SWIR) phyllically altered rocks are characterized by Al-OH absorption in ASTER band 6 because of molecular vibrations in muscovite, whereas argillically altered rocks have an absorption feature in band 5 resulting from alunite. Propylitically altered rocks form a peripheral zone and are present in scattered exposures within the main altered area. Chlorite and muscovite cause distinctive absorption features at 2.33 and 2.20 μm, respectively, although less intense 2.33 μm absorption is also present in image spectra of country rocks.Important complementary lithologic information was derived by analysis of the spectral emittance data in the 5 thermal-infrared (TIR) bands. Silicified rocks were not distinguished in the 9 VNIR + SWIR bands because of the lack of diagnostic spectral absorption features in quartz in this wavelength region. Quartz-bearing surficial deposits, as well as hydrothermally silicified rocks, were mapped in the TIR bands by using a band 13/band 12 ratio image, which is sensitive to the intensity of the quartz reststrahlen feature. Improved distinction between the quartzose surficial deposits and silicified bedrock was achieved by using matched-filter processing with TIR image spectra for reference.  相似文献   

17.
The remote sensing of Earth surface changes is an active research field aimed at the development of methods and data products needed by scientists, resource managers, and policymakers. Fire is a major cause of surface change and occurs in most vegetation zones across the world. The identification and delineation of fire-affected areas, also known as burned areas or fire scars, may be considered a change detection problem. Remote sensing algorithms developed to map fire-affected areas are difficult to implement reliably over large areas because of variations in both the surface state and those imposed by the sensing system. The availability of robustly calibrated, atmospherically corrected, cloud-screened, geolocated data provided by the latest generation of moderate resolution remote sensing systems allows for major advances in satellite mapping of fire-affected area. This paper describes an algorithm developed to map fire-affected areas at a global scale using Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance time series data. The algorithm is developed from the recently published Bi-Directional Reflectance Model-Based Expectation change detection approach and maps at 500 m the location and approximate day of burning. Improvements made to the algorithm for systematic global implementation are presented and the algorithm performance is demonstrated for southern African, Australian, South American, and Boreal fire regimes. The algorithm does not use training data but rather applies a wavelength independent threshold and spectral constraints defined by the noise characteristics of the reflectance data and knowledge of the spectral behavior of burned vegetation and spectrally confusing changes that are not associated with burning. Temporal constraints are applied capitalizing on the spectral persistence of fire-affected areas. Differences between mapped fire-affected areas and cumulative MODIS active fire detections are illustrated and discussed for each fire regime. The results reveal a coherent spatio-temporal mapping of fire-affected area and indicate that the algorithm shows potential for global application.  相似文献   

18.
NOAA AVHRR HRPT data consisting of two time frames i.e., 1985–86 and 1992–93 were analysed to determine the status of major land cover types of Bangladesh and to monitor change. The data were radiometrically corrected to spectral reflectance and mapped to a consistent Plate Caree projection followed by cloud masking and country masking. The satellite data and the methodology adopted was found to be useful for assessment and monitoring of major land cover types and their dynamics at small scale. The nature and pattern of land cover change derived from the analysis forms a valuable resource for planners and decision-makers in formulating policies, allocating scarce resources and in evaluation of the practical effects of land use policies.  相似文献   

19.
A comparison of change detection approaches for flooded area mapping using Synthetic Aperture Radar (SAR) images is provided. The aim was to assess the usefulness of fuzzy and neuro-fuzzy techniques for classification of SAR data. The work addresses both options of data-level fusion and decision-level fusion. The former is realized with multitemporal fuzzy or neural classification and the latter by combining classifications or fuzzy memberships for the pre- and post-event images. Highest overall accuracy values and flooded area accuracy values (90.3% producer's, 71.9% user's) were obtained from the neuro-fuzzy approach.  相似文献   

20.
Traditional field-based lithological mapping can be a time-consuming, costly and challenging endeavour when large areas need to be investigated, where terrain is remote and difficult to access and where the geology is highly variable over short distances. Consequently, rock units are often mapped at coarse-scales, resulting in lithological maps that have generalised contacts which in many cases are inaccurately located. Remote sensing data, such as aerial photographs and satellite imagery are commonly incorporated into geological mapping programmes to obtain geological information that is best revealed by overhead perspectives. However, spatial and spectral limitations of the imagery and dense vegetation cover can limit the utility of traditional remote sensing products. The advent of Airborne Light Detection And Ranging (LiDAR) as a remote sensing tool offers the potential to provide a novel solution to these problems because accurate and high-resolution topographic data can be acquired in either forested or non-forested terrain, allowing discrimination of individual rock types that typically have distinct topographic characteristics. This study assesses the efficacy of airborne LiDAR as a tool for detailed lithological mapping in the upper section of the Troodos ophiolite, Cyprus. Morphometric variables (including slope, curvature and surface roughness) were derived from a 4 m digital terrain model in order to quantify the topographic characteristics of four principal lithologies found in the area. An artificial neural network (the Kohonen Self-Organizing Map) was then employed to classify the lithological units based upon these variables. The algorithm presented here was used to generate a detailed lithological map which defines lithological contacts much more accurately than the best existing geological map. In addition, a separate map of classification uncertainty highlights potential follow-up targets for ground-based verification. The results of this study demonstrate the significant potential of airborne LiDAR for lithological discrimination and rapid generation of detailed lithological maps, as a contribution to conventional geological mapping programmes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号