首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Shuttle Imaging Radar (SIR-B) experiment acquired two L-band (23 cm wavelength) radar images (at about 28° and 48° incidence angles) over the Kilauea Volcano area of southeastern Hawaii. Geologic analysis of these data indicates that, although as lava flows and pyroclastic deposits can be discriminated, pahoehoe lava flows are not readily distinguished from surrounding low return materials. Preliminary analysis of data extracted from isolated flows indicates that flow type (i.e., as or pahoehoe) and relative age can be determined from their basic statistics and illumination angle.  相似文献   

2.
We use airborne lidar data for the summit area of Kilauea Caldera, Hawaii, to explore the utility of topographic data collected by the TOPSAR airborne interferometric radar for volcanology studies. The lidar data are processed to a spatial resolution of 1 m/pixel, compared to TOPSAR with a spatial resolution of 5 m. Over a variety of fresh volcanic surfaces (pahoehoe and aa lava flows, ash falls and fluvial fans), TOPSAR data are shown to have a typical vertical offset compared to the lidar data of no more than ∼2-3 m. Larger differences between the two data sets and TOPSAR data drop-outs are found to be concentrated around steep scarps such as the walls of pit craters and ground cracks associated with the Southwest Rift Zone. A comparison of these two data sets is used to explore the utility of TOPSAR to interpret the topography of volcanic features close to the spatial resolution of TOPSAR, such as spatter ramparts, fractures, a perched lava flow, and eroded ash deposits. Comparison of the TOPSAR elevation and the lidar first-return minus the return from the ground surface (the so-called “bald Earth” data) for vegetated areas reveals TOPSAR penetration into the tree canopy is typically at least 10% and no more than ∼50%, although a wide range of penetration values from 0% to 90% has been identified. Our results are significant because they show that TOPSAR data for volcanoes can reliably be used to measure regional slopes and the thickness of lava flows, and have value for the validation of coarser spatial resolution digital elevation data (such as SRTM) in areas where lidar data have not been collected.  相似文献   

3.
A ground-based fully polarimetric scatterometer operating at multiple frequencies was used to continuously monitor soybean growth over the course of a growing season. Polarimetric backscatter data at L-, C-, and X-bands were acquired every 10 min. We analysed the relationships between L-, C-, and X-band signatures, and biophysical measurements over the entire soybean growth period. Temporal changes in backscattering coefficients for all bands followed the patterns observed in the soybean growth measurements (leaf area index (LAI) and vegetation water content (VWC)). The difference between the backscattering coefficients for horizontally transmitted horizontally received (HH) and vertically transmitted vertically received (VV) polarizations at the L-band was apparent after the R2 stage (DOY 224) due to the double-bounce scattering effect. Results indicated that L-, C-, and X-band radar backscatter data can be used to detect different soybean growth stages. The results of correlation analyses between the backscattering coefficient for specific bands/polarizations and soybean growth data showed that L-band HH-polarization had the highest correlation with the vegetation parameters LAI (r = 0.98) and VWC (r = 0.97). Prediction equations for estimation of soybean growth parameters from the L-HH were developed. The results indicated that L-HH could be used for estimating the vegetation biophysical parameters considered here with high accuracy. These results provide a basis for developing a method to retrieve crop biophysical properties and guidance on the optimum microwave frequency and polarization necessary to monitor crop conditions. The results are directly applicable to systems such as the proposed NASA Soil Moisture Active Passive (SMAP) satellite.  相似文献   

4.
Abstract

A simpie structural backscatter model for a forest stand, suitable for use with L-band HH polarized radar imagery, is used to explain the increased level of backscattering observed from flooded forests. Measurements made of relative levels of backscatter from SIR-B image data of a flooded Australian forest are consistent with an interpretation based upon scattering mechanisms involving both the tree components and the understorey or forest floor. The change in Fresnel power reflection coefficient of the ground with flooding is advanced as the cause of the enhancement in backscattered power levels.  相似文献   

5.
In Queensland, Australia, forest areas are discriminated from non-forest by applying a threshold (∼ 12%) to Landsat-derived Foliage Projected Cover (FPC) layers (equating to ∼ 20% canopy cover), which are produced routinely for the State. However, separation of woody regrowth following agricultural clearing cannot be undertaken with confidence, and is therefore not mapped routinely by State Agencies. Using fully polarimetric C-, L- and P-band NASA AIRSAR and Landsat FPC data for forests and agricultural land near Injune, central Queensland, we corroborate that woody regrowth dominated by Brigalow (Acacia harpophylla) cannot be discriminated using either FPC or indeed C-band data alone, because the rapid attainment of a canopy cover leads to similarities in both reflectance and backscatter with remnant forest. We also show that regrowth cannot be discriminated from non-forest areas using either L-band or P-band data alone. However, mapping can be achieved by thresholding and intersecting these layers, as regrowth is unique in supporting both a high FPC (> ∼ 12%) and C-band SAR backscatter (> ~ − 18 dB at HV polarisation) and low L-band and P-band SAR backscatter (e.g. < =∼ 14 dB at L-band HH polarisation). To provide a theoretical explanation, a wave scattering model based on that of Durden et al. [Durden, S.L., Van Zyl, J.J. & Zebker, H.A. (1989). Modelling and observation of radar polarization signature of forested areas. IEEE Trans. Geoscience and Remote Sensing, 27, 290-301.] was used to demonstrate that volume scattering from leaves and small branches in the upper canopy leads to increases in C-band backscattering (particularly HV polarisations) from regrowth, which increases proportionally with FPC. By contrast, low L-band and P-band backscatter occurs because of the lack of double bounce interactions at co-polarisations (particularly HH) and volume scattering at HV polarisation from the stems and branches, respectively, when their dimensions are smaller than the wavelength. Regrowth maps generated by applying simple thresholds to both FPC and AIRSAR L-band data showed a very close correspondence with those mapped using same-date 2.5 m Hymap data and an average 73.7% overlap with those mapped through time-series comparison of Landsat-derived land cover classifications. Regrowth mapped using Landsat-derived FPC from 1995 and JER-1 SAR data from 1994-1995 also corresponded with areas identified within the time-series classification and true colour stereo photographs for the same period. The integration of Landsat FPC and L-band SAR data is therefore expected to facilitate regrowth mapping across Queensland and other regions of Australia, particularly as Japan's Advanced Land Observing System (ALOS) Phase Arrayed L-band SAR (PALSAR), to be launched in 2006, will observe at both L-band HH and HV polarisations.  相似文献   

6.
Abstract

We applied the Santa Barbara canopy backscatter model to model radar backscatter from mangrove forest stands in the Ganges delta of southern Bangladesh, and assessed the feasibility of delineating flooding boundaries within the stands. Modelled L-band (0-235 m wavelength) HH backscatter showed that canopy volume scattering dominated for stands under nonflooded ground surface. Double bounce trunk-ground term were enhanced by the presence of water under trees. For flooded mangrove forest, the trunk-ground term was dominant at small radar incidence angles; the trunk-ground term dominancy reduced as the incidence angle increased. Shuttle Imaging Radar (SIR-B) data and model results showed that for the mangrove forest, radar data with small incidence angles should be used to delineate the flooding boundaries.  相似文献   

7.
The goal of this research was to decompose polarimetric Synthetic Aperture Radar (SAR) imagery of upland and flooded forests into three backscatter types: single reflection, double reflection, and cross-polarized backscatter. We used a decomposition method that exploits the covariance matrix of backscatter terms. First we applied this method to SAR imagery of dihedral and trihedral corner reflectors positioned on a smooth, dry lake bed, and verified that it accurately isolated the different backscatter types. We then applied the method to decompose multi-frequency Jet Propulsion Laboratory (JPL) airborne SAR (AIRSAR) backscatter from upland and flooded forests to explain scattering components in SAR imagery from forested surfaces. For upland ponderosa pine forest in California, as SAR wavelength increased from C-band to P-band, scattering with an odd number of reflections decreased and scattering with an even number of reflections increased. There was no obvious trend with wavelength for cross-polarized scattering. For a bald cypress-tupelo floodplain forest in Georgia, scattering with an odd number of reflections dominated at C-band. Scattering power with an even number of reflections from the flooded forest was strong at L-band and strongest at P-band. Cross-polarized scattering may not be a major component of total backscatter at all three wavelengths. Various forest structural classes and land cover types were readily distinguishable in the imagery derived by the decomposition method. More importantly, the decomposition method provided a means of unraveling complex interactions between radar signals and vegetated surfaces in terms of scattering mechanisms from targets. The decomposed scattering components were additions to the traditional HH and V V backscatter. One cautionary note: the method was not well suited to targets with low backscatter and a low signal-to-noise ratio.  相似文献   

8.
Forest canopy height is a critical parameter in better quantifying the terrestrial carbon cycle. It can be used to estimate aboveground biomass and carbon pools stored in the vegetation, and predict timber yield for forest management. Polarimetric SAR interferometry (PolInSAR) uses polarimetric separation of scattering phase centers derived from interferometry to estimate canopy height. A limitation of PolInSAR is that it relies on sufficient scattering phase center separation at each pixel to be able to derive accurate forest canopy height estimates. The effect of wavelength-dependent penetration depth into the canopy is known to be strong, and could potentially lead to a better height separation than relying on polarization combinations at one wavelength alone. Here we present a new method for canopy height mapping using dual-wavelength SAR interferometry (InSAR) at X- and L-band. The method is based on the scattering phase center separation at different wavelengths. It involves the generation of a smoothed interpolated terrain elevation model underneath the forest canopy from repeat-pass L-band InSAR data. The terrain model is then used to remove the terrain component from the single-pass X-band interferometric surface height to estimate forest canopy height. The ability of L-band to map terrain height under vegetation relies on sufficient spatial heterogeneity of the density of scattering elements that scatter L-band electromagnetic waves within each resolution cell. The method is demonstrated with airborne X-band VV polarized single-pass and L-band HH polarized repeat-pass SAR interferometry using data acquired by the E-SAR sensor over Monks Wood National Nature Reserve, UK. This is one of the first radar studies of a semi-natural deciduous woodland that exhibits considerable spatial heterogeneity of vegetation type and density. The canopy height model is validated using airborne imaging LIDAR data acquired by the Environment Agency. The rmse of the LIDAR canopy height estimates compared to theodolite data is 2.15 m (relative error 17.6%). The rmse of the dual-wavelength InSAR-derived canopy height model compared to LIDAR is 3.49 m (relative error 28.5%). From the canopy height maps carbon pools are estimated using allometric equations. The results are compared to a field survey of carbon pools and rmse values are presented. The dual-wavelength InSAR method could potentially be delivered from a spaceborne constellation similar to the TerraSAR system.  相似文献   

9.
Based on a first-principles scattering theory applicable to small to moderate incidence angles, a new imaging model for ocean features is proposed. In contrast to the Alpers and Hennings Bragg-based model, the new model incorporates the full ocean wave spectrum, utilizes Hughes' suggested spectral decay rate formula and contains no adjustable parameters. For typical ocean currents, the new model predicts realistic values for L-band cross section modulations and comparable L-band and X-band cross section modulations. These latter results are shown to be due to backscatter from ocean waves that are significantly longer than the Bragg resonant wave. By comparison the Bragg-based imaging model is shown to predict that X-band modulations will be at least one order of magnitude weaker than L-band modulations.  相似文献   

10.
NEWS SECTION     
Abstract

The action balance equation is solved numerically using the method of characteristics. The algorithm can handle any functional form of the current velocity and the source function. It therefore allows a comparison of the hydrodynamic parts of the models of Alpers and Hennings (1984), Shuchman el al. (1985) and Holliday et al. (1986,1987), all describing the imaging mechanism of mapping bottom topography with side-looking airborne radar (SLAR) and synthetic aperture radar (SAR). The effects of advection and second-order terms, neglected in the original work of Alpers and Hennings (1984), are included and studied. It is shown that advection is important, notably at L-band for features smaller than 1 km, such as sand waves, while the second-order terms shift the modulation of the wave spectrum upward. All models studied give similar results for L-band and X-band, showing that the dependence of the relaxation rate on wave number and wind speed variations due to variations in current velocity has only a small influence. The predicted modulations at L-band are of the order of 10 per cent, in agreement with the Seasat data. At X-band, however, the predicted modulations are an order of magnitude smaller than at L-band. This disagrees with the experimental data which seem to indicate that modulations at X-band are of the same order of magnitude as those at L-band. Advection is important for the positioning of modulations in the radar backscatter relative to the bottom topography. However, the positional accuracy of existing experimental data is not good enough to allow comparison with theoretical predictions.  相似文献   

11.
Abstract

Good agreement is demonstrated between both L-band and X-band SARSEX internal wave image data and the predictions of a new radar ocean imaging model that incorporates Bragg, specular, and composite scattering effects. It then follows that a two-step hydrodynamic modulation process, as hypothesized by Hughes and Gower, Thompson and Gasparovic, and Watson, does not appear lo be required to explain why the SARSEX L-band and X-band internal wave image modulations are comparable.  相似文献   

12.
In this study, we investigated the potential improvement of land-use/land-cover (LU/LC) classification using multidate backscatter intensity as well as interferometric coherence images derived from Advanced Land Observing Satellite phased array L-band synthetic aperture radar data. Four interferometric synthetic aperture radar data pairs in horizontal–horizontal polarizations were processed to obtain backscatter intensity and coherence images. From the analysis of these images, it was observed that backscatter values alone are not sufficient to separate certain LU/LC classes, e.g. forest and mining areas, due to similarities in the associated scattering mechanisms producing similar backscatter values. However, the temporal coherence values from these LU/LC features were found to be distinctly different. Supervised classifications using maximum-likelihood distance were performed with various combinations of data (three-date backscatter intensity and two-date backscatter intensity with corresponding coherence data) to generate LU/LC maps of the study area. The comparison of classification accuracies obtained for different combinations of data indicates that the classification accuracy is improved by adding coherence information to the backscatter intensity data compared to using the multidate backscatter intensity data alone. Thus, the analysis of backscatter intensity along with coherence is a better alternative than using backscatter intensity alone to improve the accuracy in LU/LC classification.  相似文献   

13.
The use of a tree growth model to provide statistical information about the microwave scattering components of boreal-type forests (in this case, Scots pine and Norwegian spruce), as an alternative to data obtained through intensive fieldwork, is described. The total backscatter from six test stands at C- and L-band frequency for three polarization combinations (HH, VV and HV) was predicted. Differences between measured C- and L-band data from a polarimetric airborne Synthetic Aperture Radar (EMISAR) and simulated backscatter values compare favourably with previous studies, with like- and cross-polarization differences generally less than 2.5 dB. Modelled backscatter values were consistently less than those observed. A likely explanation for such a discrepancy is the unrealistic manner in which the model incorporates the spatial distribution of tree needles.  相似文献   

14.
Over the last two decades, the use of synthetic aperture radar (SAR) to address geologic problems has expanded as new applications for radar have been developed. One of the earliest and perhaps most surprising results from orbital SAR images of the Sahara was that, under certain conditions, radar signals penetrated up to several meters of sand to reveal subsurface features such as ancient river channels. Subsequent studies of radar penetration of arid sand deposits have dealt with factors that govern the ability of radar to penetrate a sand cover. This paper presents results from a laboratory experiment in which radar backscatter from a surface of rocks was measured under controlled conditions as a function of frequency, polarization, incidence angle, and sand cover thickness. The sand used in the experiment had a moisture content of 0.28 vol.% and caused calculated average attenuations of 4.2±1 dB/m for C-band and ∼11±2 dB/m for X-band. Results from the experiment were compared to field measurements of sand thickness during acquisition of airborne radar images. In AIRSAR images, the extent of dry sand in a dune field appears best in C-band because longer wavelength L- and P-band signals penetrate thinner sand deposits. Images of wet sand (4.9 vol.%) suggest that L-band was able to penetrate thin sand even though that sand was wet. Together, these laboratory and field measurements contribute towards a better understanding of how a sand cover modifies the radar backscatter of a surface.  相似文献   

15.
微波遥感监测土壤水分的研究初探   总被引:28,自引:2,他引:28  
在GPS定位的基础上,同步测量土攘水分、土壤后向散射系数,和同步获取的X波段、HH机化SAR图像进行了土攘水分监N.]的徽波遥感试验研究。结果表明,X波段SAR图像的灰度与表层土壤(0~10cm)水分有较好的相关性,35OHH极化的土峨后向散射系数与SAR图像灰度和土攘水分也有较好的相关性,由SAR图像及土攘的后向散射系数估算的土峨水分精度相近,相对误差均为12%左右,因而利用X波段、HH极化的机载SAR图像监浏土壤水分是可行的。雷达图像的穿透力一般在10cm以内,因此探讨了由表层土壤水分推求剖面土壤水分的可能性,并提出以土攘水分计法在浏童精度和速度上改进传统土壤水分测量的方法。  相似文献   

16.
17.
Disturbed forests may need decades to reach a mature stage and optically-based vegetation indices are usually poorly suited for monitoring purposes due to the rapid saturation of the signal with increasing canopy cover. Spaceborne synthetic aperture radar (SAR) data provide an alternate monitoring approach since the backscattered microwave energy is sensitive to the vegetation structure. Images from two regions in Spain and Alaska were used to analyze SAR metrics (cross-polarized backscatter and co-polarized interferometric coherence) from regrowing forests previously affected by fire. TerraSAR-X X-band backscatter showed the lowest sensitivity to forest regrowth, with the average backscatter increasing by 1-2 dB between the most recent fire scar and the unburned forest. Increased sensitivity (around 3-4 dB) was observed for C-band Envisat Advanced Synthetic Aperture (ASAR) backscatter. The Advanced Land Observing Satellite (ALOS) Phased Array-type L-band Synthetic Aperture Radar (PALSAR) L-band backscatter presented the highest dynamic range from unburned to recently burned forests (approximately 8 dB). The interferometric coherence showed low sensitivity to forest regrowth at all SAR frequencies. For Mediterranean forests, five phases of forest regrowth were discerned whereas for boreal forest, up to four different regrowth phases could be discerned with L-band SAR data. In comparison, the Normalized Difference Vegetation Index (NDVI) provided reliable differentiation only for the most recent development stages. The results obtained were consistent in both environments.  相似文献   

18.
Satellite-based multispectral imagery and/or synthetic aperture radar (SAR) data have been widely used for vegetation characterization, plant physiological parameter estimation, crop monitoring or even yield prediction. However, the potential use of satellite-based X-band SAR data for these purposes is not fully understood. A new generation of X-band radar satellite sensors offers high spatial resolution images with different polarizations and, therefore, constitutes a valuable information source. In this study, we utilized a TerraSAR-X satellite scene recorded during a short experimental phase when the sensor was running in full polarimetric ‘Quadpol’ mode. The radar backscatter signals were compared with a RapidEye reference data set to investigate the potential relationship of TerraSAR-X backscatter signals to multispectral vegetation indices and to quantify the benefits of TerraSAR-X Quadpol data over standard dual- or single-polarization modes. The satellite scenes used cover parts of the Mekong Delta, the rice bowl of Vietnam, one of the major rice exporters in the world and one of the regions most vulnerable to climate change. The use of radar imagery is especially advantageous over optical data in tropical regions because the availability of cloudless optical data sets may be limited to only a few days per year. We found no significant correlations between radar backscatter and optical vegetation indices in pixel-based comparisons. VV and cross-polarized images showed significant correlations with combined spectral indices, the modified chlorophyll absorption ratio index/second modified triangular vegetation index (MCARI/MTVI2) and transformed chlorophyll absorption in reflectance index/optimized soil-adjusted vegetation index (TCARI/OSAVI), when compared on an object basis. No correlations between radar backscattering at any polarization and the normalized difference vegetation index (NDVI) were observed.  相似文献   

19.
Multifrequency X-, C-, and L-band synthetic aperture radar (SAR) images of the northern sea area off the isle of Heligoland in the German Bight of the North Sea have been analysed. The data were collected during the SAR and X-band Ocean Nonlinearities Research Platform North Sea Experiment (SAXON-FPN) which was carried out in November, 1990. Different oceanographic phenomena are visible on simultaneously obtained SAR images. Wind streaks and a vortex street can be identified only on the X- and C-band SAR images. Elongated streaks of predominantly low radar return are related to nearshore reefs and are imaged on all available radar scenes. The imaging mechanism of these submarine ridges is investigated and discussed using with some modifications the simple Bragg relaxation model proposed by Alpers and Hennings. The improved model differs from the original version in the representation of the unperturbed wave-energy spectral density. Also the advection term and the phase modulation (velocity bunching) have been included in the model. Due to the improvements it is now possible to simulate the radar cross-section modulation with the same order of magnitude at 0.4 GHz (X-band) and 5.3GHz (C-band) as well as at 1.3 GHz (L-band). However, the simulated radar cross-section modulation is still underestimated compared with the SAR data, but the phase of the calculated radar cross-section modulation agrees quite well with the SAR measurements.  相似文献   

20.
This research investigated the ability of the Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) to map tropical forest in central Sumatra, Indonesia. The study used PALSAR 50 m resolution orthorectified HH and HV data. As land-cover discrimination is difficult with only two bands (HH and HV), we added textures as additional information for classification. We calculated both first- and second-order texture features and studied the effects of texture window size, quantization scale and displacement length on discrimination capability. We found that rescaling to a lower number of grey levels (8 or 16) improved discrimination capability and that equal probability quantization was more effective than uniform quantization. Increasing displacement tended to reduce the discrimination capability. Low spatial resolution increased the discrimination capability because low spatial resolution features reduce the effects of noise. A larger number of features also improved discrimination capability. However, the amount of improvement depended on the window size. We used the optimum combination of backscatter amplitude and textures as input data into a supervised multi-resolution maximum likelihood classification. We found that including texture information improved the overall classification accuracy by 10%. However, there was significant confusion between natural forest and acacia plantations, as well as between oil palm and clear cuts, presumably because the backscatter and texture of these class pairs are very similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号