共查询到20条相似文献,搜索用时 15 毫秒
1.
焦化废水催化氧化处理工艺的研究 总被引:1,自引:0,他引:1
通过试验设计了"二氧化氯催化氧化+破乳混凝"原水预处理、"二氧化氯催化氧化"三级深度处理工艺。将化学氧化处理技术、破乳混凝技术与生化工艺相结合,该应用技术将前级二氧化氯催化氧化、混凝与现有气浮除油设施有机地结合起来,不仅充分地利用了二氧化氯氧化破乳功能,而且消除了多余二氧化氯及亚氯酸根进入后续生化处理工段的隐患。通过三种技术的协调运用,提高废水处理效率,使外排废水中的COD、色度和氨氮在现有基础上进一步降低,达到国家一级排放标准。 相似文献
2.
以钢渣、粉煤灰、黏土、剩余活性污泥和过渡金属盐类为原料,利用固相混合法制备得到陶粒催化剂,并对焦化废水生化尾水进行臭氧催化深度处理研究。以COD去除率为评价指标,考察了催化剂活性组分种类与质量分数、催化剂质量浓度、臭氧投加量、焙烧温度及废水初始p H等工艺条件对COD去除率的影响。结果表明,Mn-Ti O2双活性组分质量分数为8%、焙烧温度为1 110℃、废水初始p H为7. 12、臭氧投加量为5. 81 mg/min、催化剂质量浓度为20 g/L时,陶粒催化剂对焦化废水的处理效果最佳。废水的COD从100. 08 mg/L降至44. 12 mg/L,去除率高达55. 92%。出水水质满足新修订的焦化废水排放标准。催化剂重复使用10次,活性无明显衰减,COD去除率均保持在50%以上。 相似文献
3.
4.
目前焦化废水处理主要以达标排放为目的,要实现废水回收利用,还需要进行深度处理.介绍了一种焦化废水深度处理工艺,处理后的产品水作为循环水补充水,可充分利用水资源,实现焦化废水零排放. 相似文献
5.
6.
催化氧化法处理焦化废水的研究 总被引:9,自引:0,他引:9
用混凝沉降-催化氧经法对生化处理后的焦化废水进行脱色处理,探讨了混凝条件、催化氧化体系对脱色效果以及氟离子、氰离子、CODCr、氨氮等去除效果的影响,确定了合适用于焦化废水脱色处理的新工艺。以聚三氯化铁为絮凝剂、PAM为助凝剂,新型复合氯氧化剂SD101为催化氧化剂,在pH值为6.5~7.0、水温为30℃条件下处理3小时3小时,废水的色度从140倍降至50倍以下,其他污染指标的去除效果明显。 相似文献
7.
8.
针对生化后焦化废水COD_(cr)无法达标的问题,通过中试研究了臭氧催化氧化技术深度处理焦化废水的效果,考察了臭氧投加量、反应时间、pH值、催化剂对COD_(cr)去除率的影响,确定了最佳运行参数。结果表明:连续运行68 d,当进水CODcr为140~200 mg/L,反应时间为1.5 h,臭氧投加量为80mg/(L·h)时,COD_(cr)平均去除率大于60%,出水满足《炼焦化学工业污染物排放标准》(GB 16171—2012)的要求。运行费用仅1.30元/m~3,是强制混凝沉淀技术的1/4~1/2。工艺运行稳定、可靠,催化剂使用前后,比表面积、孔结构等均未发生明显变化,催化剂未发生失活现象。 相似文献
9.
10.
以Cu(NO3)2·3H2O为原料,采用共沉淀法制备了CuMgLa/Al2O3催化剂,TEM和N2吸附-脱附结果表明,该催化剂具有介孔结构,主活性组分CuO的粒径约为25nm。以喹啉为降解目标污染物,考察了温度、催化剂质量浓度等对湿式催化氧化降解喹啉效果的影响。结果表明,当喹啉模拟废水质量浓度为1000mg/L,催化剂质量浓度为0.2 g/L,反应温度为240℃,O2分压为0.53 MPa,反应60 min时,喹啉去除率接近100.0%,化学需氧量(COD)去除率达到94.8%。通过UV光谱、LC-MS分析喹啉降解生成的中间体,结合叔丁醇淬灭实验,发现·OH氧化在湿式催化氧化降解喹啉体系中起主导作用,推测了喹啉可能的降解路径。在最优工艺条件下,COD质量浓度为7000mg/L的模拟焦化废水COD的去除率达94.6%;而COD质量浓度为4740.0 mg/L,NH3-N质量浓度为884.2 mg/L的实际焦化废水C... 相似文献
11.
为解决焦化废水净化效率低、经济性差、对环境污染严重的现状,提出以臭氧-絮凝综合处理为核心的新型焦化废水处理技术,对不同工艺参数下的焦化废水处理方案进行了研究,结果表明,当催化剂添加比例为30%、臭氧添加流量为3 L/min、絮凝剂添加量为690 mg/L的情况下该技术具有最佳的净化处理效果,对焦化废水中化学需氧量(COD)的去除率达到了69.9%,对总有机碳(TOC)的去除率达到了52.4%,化学需氧量极大地提升了焦化废水的净化效果,降低了对环境的污染。 相似文献
12.
《工业水处理》2021,41(8)
采用电催化氧化—活性炭处理焦化废水生化出水,研究电流密度、极板数量、间距、活性炭种类等因素对处理效果的影响。在生化出水COD为136.6 mg/L、TOC为56.6 mg/L条件下,当极板数量为2对、间距为1.8 cm、电流密度为20 mA/cm~2、反应6 h时,电催化出水COD去除率可达99.7%,TOC去除率为47.87%。相较于椰壳炭,比表面积大的煤质炭对电催化处理出水的吸附效果较好。当煤质炭投加量为20 g/L、反应120 min时,活性炭出水TOC总去除率可达67.88%。煤质炭吸附废水中有机物的过程更符合准二级动力学模型,颗粒内扩散模型反映该吸附是一个复杂过程。三维荧光光谱表征表明,电催化能氧化分解生化出水中部分类腐殖酸物质,活性炭可进一步吸附去除残留的类腐殖酸物质。 相似文献
13.
针对煤化工企业焦化废水的二级生化出水可生化性差、含盐量与COD高,以及废水中包含多环芳香族化合物、脂肪族化合物等难生物降解污染物的特点,采用Fenton氧化+电渗析+超滤+反渗透膜法组合深度处理工艺对废水进行处理。运行结果表明,产水水质达到并优于《工业循环冷却水处理设计规范》(GB 50050—2007)中再生水水质要求,产水可作为厂区生产补充新水使用,废水回收率稳定达到75%。采用Fenton氧化与电渗析粗脱盐技术相结合的强化预处理设施,可以有效缓解反渗透装置的膜污染,延长反渗透膜的清洗周期至3个月。 相似文献
14.
15.
16.
17.
颗粒活性炭催化臭氧氧化法降解焦化废水有机物 总被引:3,自引:0,他引:3
以COD和挥发酚作为焦化废水中有机物的指标,探讨了颗粒活性炭催化臭氧氧化法对有机物的处理效果、活性炭的催化效果和最佳投加量。结果表明添加颗粒活性炭能有效提高臭氧对焦化废水中的COD和挥发酚的降解效果,颗粒活性炭投加量为20g/L时,COD的去除率提高了20%。通过颗粒活性炭吸附试验可以明确颗粒活性炭在臭氧,活性炭系统中的主要作用是催化作用,活性炭的吸附作用只是催化反应的中间过程,基本不会影响有机物的最终去除率。活性炭投加量(10—25g/L)越大,其催化效果越好,但考虑到费用与效益,以20g/L为宜。活性炭作为催化剂重复使用四次后,其催化效果未明显下降。 相似文献
18.
19.
煤焦化过程中产生大量的H2S、SO2等有毒有害气体,这些气体在水中的溶解度较低,现工艺主要使用氨水中和废气进行处理,但处理后生成了包括硫化铵、硫氢化铵以及亚硫酸铵、亚硫酸氢铵等混合物,无法利用并产生新的难处理含硫氨氮废水。以氯化镍为催化剂催化空气氧化处理上述含硫氨氮废水,成为农业用硫酸铵液体肥料,建立了一条清洁处理上述工艺废水的技术路线。考察了催化剂种类和用量、pH值、反应温度、反应时间、空气流量等对反应结果的影响。采用正交实验设计建立了优化的工艺技术条件,即:用氯化镍作为催化剂进行催化,其用量为10%,pH为9~10,反应温度为55℃,空气流量为40 mL·min-1的最优条件下反应100 min,氧化去除了98%以上的S2-。复配后产品经检验达到了《肥料级硫酸铵》(GB/T535—2020)金属离子限量标准要求。 相似文献