首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Medium Resolution Imaging Spectrometer (MERIS) sensor, with its good physical design, can provide excellent data for water colour monitoring. However, owing to the shortage of shortwave-infrared (SWIR) bands, the traditional near-infrared (NIR)–SWIR algorithm for atmospheric correction in inland turbid case II waters cannot be extended to the MERIS data directly, which limits its applications. In this study, we developed a modified NIR black pixel method for atmospheric correction of MERIS data in inland turbid case II waters. In the new method, two special NIR bands provided by MERIS data, an oxygen absorption band (O2 A-band, 761 nm) and a water vapour absorption band (vapour A-band, 900 nm), were introduced to keep the assumption of zero water-leaving reflectance valid according to the fact that both atmospheric transmittance and water-leaving reflectance are very small at these two bands. After addressing the aerosol wavelength dependence for the cases of single- and multiple-scattering conditions, we further validated the new method in two case lakes (Lake Dianchi in China and Lake Kasumigaura in Japan) by comparing the results with in situ measurements and other atmospheric correction algorithms, including Self-Contained Atmospheric Parameters Estimation for MERIS data (SCAPE-M) and the Basic ERS (European Remote Sensing Satellite) & ENVISAT (Environmental Satellite) (A)ATSR ((Advanced) Along-Track Scanning Radiometer) and MERIS (BEAM) processor. We found that the proposed method had acceptable accuracy in the bands within 560–754 nm (MERIS bands 5–10) (average absolute deviation (AAD) = 0.0081, average deviation (AD) = 0.0074), which are commonly used in the estimation models of chlorophyll-a (chl-a) concentrations. In addition, the performance of the new method was superior to that of the BEAM processor and only slightly worse than that of SCAPE-M in these bands. Considering its acceptable accuracy and simplicity both in principle and at implementation compared with the SCAPE-M method, the new method provides an option for atmospheric correction of MERIS data in inland turbid case II waters with applications aiming for chl-a estimation.  相似文献   

2.
Traditional methods for aerosol retrieval and atmospheric correction of remote sensing data over water surfaces are based on the assumption of zero water reflectance in the near-infrared. Another type of approach which is becoming very popular in atmospheric correction over water is based on the simultaneous retrieval of atmospheric and water parameters through the inversion of coupled atmospheric and bio-optical water models. Both types of approaches may lead to substantial errors over optically-complex water bodies, such as case II waters, in which a wide range of temporal and spatial variations in the concentration of water constituents is expected. This causes the water reflectance in the near-infrared to be non-negligible, and that the water reflectance response under extreme values of the water constituents cannot be described by the assumed bio-optical models. As an alternative to these methods, the SCAPE-M atmospheric processor is proposed in this paper for the automatic atmospheric correction of ENVISAT/MERIS data over inland waters. A-priori assumptions on the water composition and its spectral response are avoided by SCAPE-M by calculating reflectance of close-to-land water pixels through spatial extension of atmospheric parameters derived over neighboring land pixels. This approach is supported by the results obtained from the validation of SCAPE-M over a number of European inland water validation sites which is presented in this work. MERIS-derived aerosol optical thickness, water reflectance and water pigments are compared to in-situ data acquired concurrently to MERIS images in 20 validation match-ups. SCAPE-M has also been compared to specific processors designed for the retrieval of lake water constituents from MERIS data. The performance of SCAPE-M to reproduce ground-based measurements under a range of water types and the ability of MERIS data to monitor chlorophyll-a and phycocyanin pigments using semiempirical algorithms after SCAPE-M processing are discussed. It has been found that SCAPE-M is able to provide high accurate water reflectance over turbid waters, outperforming models based on site-specific bio-optical models, although problems of SCAPE-M to cope with clear waters in some cases have also been identified.  相似文献   

3.
The remote sensing of turbid waters (Case II) using the Medium Resolution Imaging Spectrometer (MERIS) requires new approaches for atmospheric correction of the data. Unlike the open ocean (Case I waters) there are no wavelengths where the water-leaving radiance is zero. A coupled hydrological atmospheric model is described here. The model solves the water-leaving radiance and atmospheric path radiance in the near-infrared (NIR) over Case II turbid waters. The theoretical basis of this model is described, together with its place in the proposed MERIS processing architecture. Flagging procedures are presented that allow seamless correction of both Case I waters, using conventional models, and Case II waters using the proposed model. Preliminary validation of the model over turbid waters in the Humber estuary, UK is presented using Compact Airborne Spectrographic Imager (CASI) imagery to simulate the MERIS satellite sensor. The results presented show that the atmospheric correction scheme has superior performance over the standard single scattering approach, which assumes that water-leaving radiance in the NIR is zero. Despite problems of validating data in such highly dynamic tidal waters, the results show that retrievals of sediments within 50% are possible from algorithms derived from the theoretical models.  相似文献   

4.
Eutrophication and cyanobacterial algal blooms present an increasing threat to the health of freshwater ecosystems and to humans who use these resources for drinking and recreation. Remote sensing is being used increasingly as a tool for monitoring these phenomena in inland and near-coastal waters. This study uses the Medium Resolution Imaging Spectrometer (MERIS) to view Zeekoevlei, a small hypertrophic freshwater lake situated on the Cape Flats in Cape Town, South Africa, dominated by Microcystis cyanobacteria. The lake's small size, highly turbid water, and covariant water constituents present a challenging case for both algorithm development and atmospheric correction. The objectives of the study are to assess the optical properties of the lake, to evaluate various atmospheric correction procedures, and to compare the performance of empirical and semi-analytical algorithms in hypertrophic water. In situ water quality parameter and radiometric measurements were made simultaneous to MERIS overpasses. Upwelling radiance measurements at depth 0.66 m were corrected for instrument self-shading and processed to water-leaving reflectance using downwelling irradiance measurements and estimates of the vertical attenuation coefficient for upward radiance, Ku, generated from a simple bio-optical model estimating the total absorption, a(λ), and backscattering coefficients, bb(λ). The normalised water-leaving reflectance was used for assessing the accuracy of image-based Dark Object Subtraction and 6S Radiative Transfer Code atmospheric correction procedures applied to MERIS. Empirical algorithms for estimating chlorophyll a (Chl a), Total Suspended Solids (TSS), Secchi Disk depth (zSD) and absorption by CDOM (aCDOM) were derived from simultaneously collected in situ and MERIS measurements. The empirical algorithms gave high correlation coefficient values, although they have a limited ability to separate between signals from covariant water constituents. The MERIS Neural Network algorithms utilised in the standard Level 2 Case 2 waters product and Eutrophic Lakes processor were also used to derive water constituent concentrations. However, these failed to produce reasonable comparisons with in situ measurements owing to the failure of atmospheric correction and divergence between the optical properties and ranges used to train the algorithms and those of Zeekoevlei. Maps produced using the empirical algorithms effectively show the spatial and temporal variability of the water quality parameters during April 2008. On the basis of the results it is argued that MERIS is the current optimal sensor for frequent change detection applications in inland waters. This study also demonstrates the considerable potential value for simple TOA algorithms for hypertrophic systems. It is recommended that regional algorithm development be prioritized in southern Africa and that remote sensing be integrated into future operational water quality monitoring systems.  相似文献   

5.
A new empirical index, termed the normalized suspended sediment index (NSSI), is proposed to predict total suspended sediment (TSS) concentrations in inland turbid waters using Medium Resolution Imaging Spectrometer (MERIS) full-resolution (FR) 300 m data. The algorithm is based on the normalized difference between two MERIS spectral bands, 560 and 760 nm. NSSI shows its potential in application to our study region – Poyang Lake – the largest freshwater lake in China. An exponential function (R2 = 0.90, p < 0.01) accurately explained the variance in the in situ data and showed better performance for the TSS range 10–524 mg l?1. The algorithm was then validated with TSS estimates using an atmospheric-corrected MERIS FR image. The validation showed that the NSSI algorithm was a more robust TSS algorithm than the band-ratio algorithms. Findings of this research imply that NSSI can be successfully used on MERIS images to obtain TSS in Poyang Lake. This work provided a practical remote-sensing approach to estimate TSS in the optically and hydrologically complex Poyang Lake and the method can be easily extended to other similar waters.  相似文献   

6.
The Medium Resolution Imaging Spectrometer (MERIS) will be flown on the Envisat mission in 1999 and will provide the user community with a unique instrument for monitoring important water quality parameters in coastal waters. The instrument will be of special interest for coastal zone research projects such as the International Geosphere Biosphere Program (IGBP), Land Ocean Interactions in the Coastal Zone (LOICZ) and for environmental impact monitoring, assessment and management programmes. MERIS characteristics include nine spectral channels (out of 15) covering the visible spectral range (410-705nm) which are optimized to the radiance level of water surfaces. Within this range there are bands dedicated to mapping concentrations of suspended particulate matter, phytoplankton, gelbstoff (or coloured dissolved organic matter) and bands for determining sunlight-stimulated fluorescence of phytoplankton chlorophyll. Its spatial resolution of 300m and revisit period of 3 days are well suited to the observation of most of the phenomena which are of interest for coastal water quality research and management. New algorithms will have to be developed for computing the different water constituents from the observations and for atmospheric correction of turbid waters. Examples of applications, for which the design of MERIS is optimized, are presented.  相似文献   

7.
We provide results of quantitative measurements and characterization for inland freshwater Lake Taihu from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the satellite Aqua. China's Lake Taihu, which is located in the Yangtze River delta in one of the world's most urbanized and heavily populated areas, contains consistently highly turbid waters in addition to frequent large seasonal algae blooms in various lake regions. Thus, satellite data processing requires use of the shortwave infrared (SWIR) atmospheric correction algorithm. Specifically for Lake Taihu, an iterative SWIR-based atmospheric correction algorithm has been developed and proven to provide reasonably accurate water-leaving radiance spectra data. Using MODIS-Aqua measurements, the blue-green algae bloom in Lake Taihu in 2007 has been studied in detail, demonstrating the importance and usefulness of satellite water color remote sensing for effectively monitoring and managing a bloom event.Seasonal and interannual variability, as well as spatial distributions, of lake water properties were studied and assessed using the MODIS-Aqua measurements from 2002 to 2008. Results show that overall waters in Lake Taihu are consistently highly turbid all year round, with the winter and summer as the most and least turbid seasons in the lake, respectively. Extremely turbid waters in the winter are primarily attributed to strong winter winds that lead to significant amounts of total suspended sediment (TSS) in the water column. In addition, MODIS-Aqua-measured water-leaving radiance at the blue band is consistently low in various bay regions in Lake Taihu, indicating high algae concentration in these regions. Climatological water property maps, including normalized water-leaving radiance spectra nLw(λ), chlorophyll-a concentration, and water diffuse attenuation coefficient at the wavelength of 490 nm (Kd(490)), are derived from all MODIS-Aqua data from 2002 to 2008 for Lake Taihu, showing overall spatial distribution features for the lake water property.  相似文献   

8.
An algorithm for the derivation of atmospheric parameters and surface reflectance data from MEdium Resolution Imaging Specrometer Instrument (MERIS) on board ENVIronmental SATellite (ENVISAT) images has been developed. Geo-rectified aerosol optical thickness (AOT), columnar water vapor (CWV) and spectral surface reflectance maps are generated from MERIS Level-1b data over land. The algorithm has been implemented so that AOT, CWV and reflectance products are provided on an operational manner, making no use of ancillary parameters apart from those attached to MERIS products. For this reason, it has been named Self-Contained Atmospheric Parameters Estimation from MERIS data (SCAPE-M). The fundamental basis of the algorithm and applicable error figures are presented in the first part of this paper. In particular, errors of ± 0.03, ± 4% and ± 8% have been estimated for AOT, CWV and surface reflectance retrievals, respectively, by means of a sensitivity analysis based on a synthetic data set simulated under a usual MERIS scene configuration over land targets. The assumption of a fixed aerosol model, the coarse spatial resolution of the AOT product and the neglection of surface reflectance directional effects were also identified as limitations of SCAPE-M. Validation results are detailed in the second part of the paper. Comparison of SCAPE-M AOT retrievals with data from AErosol RObotic NETwork (AERONET) stations showed an average Root Mean Square Error (RMSE) of 0.05, and an average correlation coefficient R2 of about 0.7-0.8. R2 values grew up to more than 0.9 in the case of CWV after comparison with the same stations. A good correlation is also found with the MERIS Level-2 ESA CWV product. Retrieved surface reflectance maps have been successfully compared with reflectance data derived from the Compact High Resolution Imaging Spectrometer (CHRIS) on board the PRoject for On-Board Autonomy (PROBA) in the first place. Reflectance retrievals have also been compared with reflectance data derived from MERIS images by the Bremen AErosol Retrieval (BAER) method. A good correlation in the red and near-infrared bands was found, although a considerably higher proportion of pixels was successfully processed by SCAPE-M.  相似文献   

9.
基于分区暗像元和Spline插值方法估算太湖气溶胶光学厚度   总被引:3,自引:0,他引:3  
传统暗像元大气校正算法认为研究区域上空的气溶胶光学厚度呈均匀分布状态。对于Ⅱ类水体,尤其是气溶胶类型复杂的内陆湖区,暗像元算法的均匀性假设将不再适用。针对传统暗像元算法的不合理性,本研究将太湖湖区划分为9个子区域,每个子区域利用传统暗像元算法估算其气溶胶光学厚度,然后结合Spline插值算法获取整个太湖的气溶胶光学厚度信息,并以传统暗像元大气校正算法作为参照,探讨与分析分区暗像元算法的精度状况。通过本文的研究可知:气溶胶光学厚度是遥感大气校正的关键参数;在2003年10月28日,受西北风的影响,太湖上空的气溶胶光学厚度呈湖南低,湖北高的分布模式;分区暗像元大气校正算法获取的气溶胶光学厚度平均值为0.79,标准偏差为0.099,标准偏差与平均值的比值为12.58%,与传统暗像元算法相比,分区暗像元算法综合考虑了水体上空气溶胶光学厚度空间分布的不均匀性,进而有利于改善大气校正的精度。  相似文献   

10.
The development and validation of an atmospheric correction algorithm designed for the Medium Resolution Imaging Spectrometer (MERIS) with special emphasis on case‐2 waters is described. The algorithm is based on inverse modelling of radiative transfer (RT) calculations using artificial neural network (ANN) techniques. The presented correction scheme is implemented as a direct inversion of spectral top‐of‐atmosphere (TOA) radiances into spectral remote sensing reflectances at the bottom‐of‐atmosphere (BOA), with additional output of the aerosol optical thickness (AOT) at four wavelengths for validation purposes. The inversion algorithm was applied to 13 MERIS Level1b data tracks of 2002–2003, covering the optically complex waters of the North and Baltic Sea region. A validation of the retrieved AOTs was performed with coincident in situ automatic sun–sky scanning radiometer measurements of the Aerosol Robotic Network (AERONET) from Helgoland Island located in the German Bight. The accuracy of the derived reflectances was validated with concurrent ship‐borne reflectance measurements of the SIMBADA hand‐held field radiometer. Compared to the MERIS Level2 standard reflectance product generated by the processor versions 3.55, 4.06 and 6.3, the results of the proposed algorithm show a significant improvement in accuracy, especially in the blue part of the spectrum, where the MERIS Level2 reflectances result in errors up to 122% compared to only 19% with the proposed algorithm. The overall mean errors within the spectral range of 412.5–708.75 nm are calculated to be 46.2% and 18.9% for the MERIS Level2 product and the presented algorithm, respectively.  相似文献   

11.
In order to extract quantitative water‐leaving information from the Thematic Mapper (TM) image accurately in inland waters, atmospheric correction is a necessary step. Based on former researchers' results, the paper presents two atmospheric correction algorithms based on meteorological data (MD) and on Moderate Resolution Imaging Spectroradiometer (MODIS) Vicarious Calibration (MVC) for TM image in inland waters according to the theory of radiative transfer. Studying Taihu lake, China, in this paper we derived water remote sensing reflectance from a TM image of 26 July 2004 by these two atmospheric correction algorithms and we compare the results with that of dark object subtraction (DOS) and 6S code. The results show that the effect of atmospheric correction based on meteorological data and MODIS Vicarious Calibration is much better than that of DOS and 6S code. Although the MD is more accurate, MVC may be an ideal choice for TM images in inland water because TERRA MODIS images can be acquired easily than collecting meteorological data at the time of satellites passing over.  相似文献   

12.
The optical properties of natural waters beyond the visible range, in the near-infrared (NIR, 700-900 nm), have received little attention because they are often assumed to be mostly determined by the large absorption coefficient of pure water, and because of methodological difficulties. It is now growingly admitted that the NIR represents a potential optical source of unambiguous information about suspended sediments in turbid waters, thence the need for better understanding the NIR optical behaviour of such waters. It has recently been proposed (Ruddick et al., Limnology and Oceanography. 51, 1167-1179, 2006) that the variability in the shape of the surface ocean reflectance spectrum in the NIR is negligible in turbid waters. In the present study, we show, based on both in situ and remote sensing data, that the shape of the ocean reflectance spectrum in the NIR does vary in turbid to extremely turbid waters. Space-borne ocean reflectance data were collected using 3 different sensors (SeaWiFS, MODIS/Aqua and MERIS) over the Amazon, Mackenzie and Rio de la Plata turbid river plumes during extremely clear atmospheric conditions so that reliable removal of gas and aerosol effects on reflectance could be achieved. In situ NIR reflectance data were collected in different European estuaries where extremely turbid waters were found. In both data sets, a flattening of the NIR reflectance spectrum with increasing turbidity was observed. The ratio of reflectances at 765 nm and 865 nm, for instance, varied from ca. 2 down to 1 in our in situ data set, while a constant value of 1.61 had been proposed based on theory in a previous study. Radiative transfer calculations were performed using a range of realistic values for the seawater inherent optical properties, to determine the possible causes of variations in the shape of the NIR reflectance spectrum. Based on these simulations, we found that the most significant one was the gradual increase in the contribution of suspended sediments to the color of surface waters, which often leads to the flattening of the reflectance spectrum. Changes in the scattering and absorption properties of particles also contributed to variations in the shape of the NIR surface ocean reflectance spectrum. The impact of such variations on the interpretation of ocean color data is discussed.  相似文献   

13.
The diffuse attenuation coefficient, Kd(λ), is an important water optical property. Detection of Kd(λ) by means of remote sensing can provide significant assistance in understanding water environment conditions and many biogeochemical processes. Even when existing algorithms exhibit good performance in clear open ocean and turbid coastal waters, accurate quantification of highly turbid inland water bodies can still be a challenge due to their bio-optical complexity. In this study, we examined the performance of two typical pre-existing Kd(490) models in inland water bodies from Lake Taihu, Lake Chaohu, and the Three Gorges Reservoir in China. On the basis of water optical classification, new Kd(490) models were developed for these waters by means of the support vector machine approach. The obtained results showed that the two pre-existing Kd(490) models presented relatively large errors by comparison with the new models, with mean absolute percentage error (MAPE) values above ~30%. More importantly, among the new models, type-specific models generally outperformed the aggregated model. For water classified as Type 1 + Type 2, the type-specific model produced validation errors with MAPE = 16.8% and RMSE = 0.98 m?1. For water classified as Type 3, the MAPE and RMSE of the type-specific model were found to be 18.8% and 1.85 m?1, respectively. The findings in this study demonstrate that water classification (prior to algorithm development) is needed for the development of excellent Kd(490) retrieval algorithms, and the type-specific models thus developed are an important supplement to existing Kd(490) retrieval models for highly turbid inland waters.  相似文献   

14.
A good knowledge of the inherent optical properties (IOPs) of aerosols is a strong requirement for accurately performing atmospheric correction over the ocean. For several decades, IOPs have been computed using standard aerosol models (SAMs) that characterize the micro-physical properties of aerosols. These SAMs were used in the last generation of the Medium Resolution Imaging Spectrometer (MERIS) auxiliary data files (ADFs) to feed the atmospheric correction algorithm. Alternatively, Aerosol Robotic Network (AERONET) measurements can also provide IOPs. We built a database with the aerosol IOPs encountered over four AERONET stations in the North Sea plus one at the Acqua Alta Oceanographic Tower (AAOT, Venice, Italy). Several thousands of data sequences containing the aerosol IOPs were processed with filtering techniques and statistical methods to produce 16 classes of IOPs. An analysis of the dispersion of the IOPs within each class was conducted to evaluate the induced errors in the MERIS level-2 (L2) products in European coastal waters. We also investigated the reduction in the errors that can be achieved if there is access to auxiliary meteorological data (i.e. the relative humidity) or by using the bidirectionality in the satellite measurements, such as for advanced along-track scanning radiometer (AATSR) data.  相似文献   

15.
Chlorophyll-a (Chla) concentrations and ‘water-leaving’ reflectance were assessed along transects in Keweenaw Bay (Lake Superior) and in Green Bay (Lake Michigan) (two of the Laurentian Great Lakes, USA), featuring oligotrophic (0.4–0.8 mg Chla m? 3) and eutrophic to hyper-eutrophic waters (11–131 mg Chla m? 3), respectively. A red-to-NIR band Chla retrieval algorithm proved to be applicable to Green Bay, but gave mostly negative values for Keweenaw Bay. An alternative algorithm could be based on Chla fluorescence, which in Keweenaw Bay was indicated by enhanced reflectance near 680 nm. Bands 7, 8 and 9 of the Medium Resolution Imaging Spectrometer (MERIS) have been specifically designed to detect phytoplankton fluorescence in coastal waters. A quite strong linear relationship was found between Chla concentration and fluorescence line height (FLH) computed with these MERIS bands. The same relationship held for observations on oligotrophic waters elsewhere, but not for Green Bay, where the FLH diminished to become negative as Chla increased. The remote sensing application of the algorithms could be tested because a MERIS scene was acquired coinciding with the day of the field observations in Keweenaw Bay and one day after those in Green Bay. For Green Bay the pixel values from the red-to-NIR band algorithm compared well to the steep Chla gradient in situ. This result is very positive from the perspective of satellite use in monitoring eutrophic inland and coastal waters in many parts of the world. Implementation of the FLH relationship in the scene of Keweenaw Bay produced highly variable pixel values. The FLH in oligotrophic inland waters like Lake Superior appears to be very close to or below the MERIS detection limit. An empirical algorithm incorporating three MERIS bands in the blue-to-green spectral region might be used as an alternative, but its applicability to other regions and seasons remains to be verified. Moreover, none of the algorithms will be suitable for mesotrophic water bodies. The results indicate that Chla mapping in oligotrophic and mesotrophic areas of the Great Lakes remains problematic for the current generation of satellite sensors.  相似文献   

16.
The bidirectional reflectance properties of the anisotropic light field above the water surface are important for a range of applications. The bidirectional reflectance distribution function of oceanic waters has been well characterized but there is a lack of information for turbid inland waters. In addition, there is a lack of bidirectional reflectance data measured in turbid inland waters partially due to the difficulty in collecting in situ water-surface multi-angle remote-sensing reflectance data. To facilitate bidirectional reflectance studies of turbid inland waters using in situ multi-angular reflectance data, we have designed and developed a simple hand-held 3D positioning pole to position the spectrometer optical fibre probe and a specific method to collect the multi-angular reflectance data above the water surface with this pole. Using this device, we collected multi-angular reflectance data in Meiliang Bay, Taihu Lake, China, and analysed the uncertainties in this method. We analysed the bidirectional distribution characteristics of the data, and compared the findings to those in the literature. Both uncertainty analysis and bidirectional distribution characteristics analysis showed that our method is effective in collecting multi-angular reflectance above the water surface and can be applied to validate bidirectional correction models in the future.  相似文献   

17.
Inland waters are an increasingly valuable natural resource that has major impact and benefits for population and environment. The new generation of ocean colour sensors has better spatial resolution, and hence are suitable for monitoring water quality of lakes. As an alternative to standard algorithms developed for oceans, which often fail over inland waters, we propose here a scheme based on aerosol remote sensing over land. The ocean colour sensors have spectral bands that allow characterization of aerosols over dark land pixels (vegetation in the blue and in the red spectral bands). It is then possible to use a representative aerosol model (aerosol optical thickness and aerosol type) for atmospheric correction over inland waters after validating the spatial homogeneity of the aerosol model in the lake vicinity. The performance of this new algorithm is shown in Sea‐viewing Wide Field‐of‐view Sensor (SeaWiFS) scenes of Lakes Balaton (Hungary) and Constance (Germany). We demonstrate the good spatial homogeneity of the aerosols and the meaningfulness of the water‐leaving reflectances derived over these two lakes.

We also addressed the particularity of Fresnel reflection computation. The direct to diffuse term of this Fresnel contribution is reduced because of the limited size of the lake. Based on the primary scattering approximation, we propose a simple formulation of this component. A specific Fresnel correction needs to be developed to fulfil the accuracy requirements.  相似文献   

18.
An assessment of the black ocean pixel assumption for MODIS SWIR bands   总被引:2,自引:0,他引:2  
Recent studies show that an atmospheric correction algorithm using shortwave infrared (SWIR) bands improves satellite-derived ocean color products in turbid coastal waters. In this paper, the black pixel assumption (i.e., zero water-leaving radiance contribution) over the ocean for the Moderate Resolution Imaging Spectroradiometer (MODIS) SWIR bands at 1240, 1640, and 2130 nm is assessed for various coastal ocean regions. The black pixel assumption is found to be generally valid with the MODIS SWIR bands at 1640 and 2130 nm even for extremely turbid waters. For the MODIS 1240 nm band, however, ocean radiance contribution is generally negligible in mildly turbid waters such as regions along the U.S. east coast, while some slight radiance contributions are observed in extremely turbid waters, e.g., some regions along the China east coast, the estuary of the La Plata River. Particularly, in the Hangzhou Bay, the ocean radiance contribution at the SWIR band 1240 nm results in an overcorrection of atmospheric and surface effects, leading to errors of MODIS-derived normalized water-leaving radiance at the blue reaching ~ 0.5 mW cm− 2 μm− 1 sr− 1. In addition, we found that, for non-extremely turbid waters, i.e., the ocean contribution at the near-infrared (NIR) band < ~ 1.0 mW cm− 2 μm− 1 sr− 1, there exists a good relationship in the regional normalized water-leaving radiances between the red and the NIR bands. Thus, for non-extremely turbid waters, such a red-NIR radiance relationship derived regionally can possibly be used for making corrections for the regional NIR ocean contributions without using the SWIR bands, e.g., for atmospheric correction of ocean color products derived from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS).  相似文献   

19.
Atmospheric correction for the ocean color products derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) uses two near-infrared (NIR) bands centered at 748 and 869 nm for identifying aerosol type and correcting aerosol contributions at the MODIS visible wavelengths. The ocean is usually assumed to be black for open oceans at these two NIR bands with modifications for the productive waters and aerosols are assumed to be non- or weakly absorbing. For cases with strongly absorbing aerosols and cases with the significant NIR ocean contributions, the derived ocean color products will have significant errors, e.g., the derived MODIS normalized water-leaving radiances are biased low considerably. Both cases lead to a significant drop of the sensor-measured radiance at the short visible wavelengths, and they both have similar and indistinguishable radiance characteristics at the short visible wavelengths. To properly handle such cases, the strongly absorbing aerosols and turbid waters need to be identified. Therefore, an appropriate approach (different from the standard procedure) may be carried out. In this paper, we demonstrate methods to identify the turbid waters and strongly absorbing aerosols using combinations of MODIS-measured radiances at the short visible, NIR, and short wave infrared (SWIR) bands. The algorithms are based on the fact that for the turbid waters the ocean has significantly large contributions at the NIR bands, whereas at the SWIR bands the ocean is still black due to much stronger water absorption. With detection of the turbid waters, the strongly absorbing aerosols can then be identified using the MODIS measurements at the short visible and NIR bands. We provide results and discussions for test and evaluation of the algorithm performance with various examples in the coastal regions for the turbid waters and for various absorbing aerosols (e.g., volcano ash plumes, dust, smoke). The proposed algorithms are efficient in the data processing, and can be carried out prior to the atmospheric correction procedure.  相似文献   

20.
Using the NASA maintained ocean optical and biological in situ data that were collected during 2002-2005, we have evaluated the performance of atmospheric correction algorithms for the ocean color products from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Aqua. Specifically, algorithms using the MODIS shortwave infrared (SWIR) bands and an approach using the near-infrared (NIR) and SWIR combined method are evaluated, compared to the match-up results from the NASA standard algorithm (using the NIR bands). The in situ data for the match-up analyses were collected mostly from non-turbid ocean waters. It is critical to assess and understand the algorithm performance for deriving MODIS ocean color products, providing science and user communities with the important data quality information. Results show that, although the SWIR method for data processing has generally reduced the bias errors, the noise errors are increased due mainly to significantly lower sensor signal-noise ratio (SNR) values for the MODIS SWIR bands, as well as the increased uncertainties using the SWIR method for the atmospheric correction. This has further demonstrated that future ocean color satellite sensors will require significantly improved sensor SNR performance for the SWIR bands. The NIR-SWIR combined method, for which the non-turbid and turbid ocean waters are processed using the NIR and SWIR method, respectively, has been shown to produce improved ocean color products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号